1、2019年上海市中考数学试卷一、选择题:(本大题共6题.每题4分,满分24【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1(4分)下列运算正确的是()A3x+2x5x2B3x2xxC3x2x6xD3x2x2(4分)如果mn,那么下列结论错误的是()Am+2n+2Bm2n2C2m2nD2m2n3(4分)下列函数中,函数值y随自变量x的值增大而增大的是()AyByCyDy4(4分)甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A甲的成绩比乙稳定 B甲的最好成绩比乙高C甲的成绩的平均数比乙大 D甲的成绩的中位数比乙
2、大5(4分)下列命题中,假命题是()A矩形的对角线相等 B矩形对角线交点到四个顶点的距离相等C矩形的对角线互相平分D矩形对角线交点到四条边的距离相等6(4分)已知A与B外切,C与A、B都内切,且AB5,AC6,BC7,那么C的半径长是()A11B10C9D8二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答纸的相应位置上】7(4分)计算:(2a2)2 8(4分)已知f(x)x21,那么f(1) 9(4分)如果一个正方形的面积是3,那么它的边长是 10(4分)如果关于x的方程x2x+m0没有实数根,那么实数m的取值范围是 11(4分)一枚材质均匀的骰子,六个面的点数分别是1
3、,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是 12(4分)九章算术中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛 斛米(注:斛是古代一种容量单位)13(4分)在登山过程中,海拔每升高1千米,气温下降6,已知某登山大本营所在的位置的气温是2,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y,那么y关于x的函数解析式是 14(4分)小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这
4、50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约 千克15(4分)如图,已知直线11l2,含30角的三角板的直角顶点C在l1上,30角的顶点A在l2上,如果边AB与l1的交点D是AB的中点,那么1 度16(4分)如图,在正边形ABCDEF中,设,那么向量用向量、表示为 17(4分)如图,在正方形ABCD中,E是边AD的中点将ABE沿直线BE翻折,点A落在点F处,联结DF,那么EDF的正切值是 18(4分)在ABC和A1B1C1中,已知CC190,ACA1C13,BC4,B1C12,
5、点D、D1分别在边AB、A1B1上,且ACDC1A1D1,那么AD的长是 三、解答题(本大题共7题,满分78分)19(10分)计算:|1|+820(10分)解方程:121(10分)在平面直角坐标系xOy中(如图),已知一次函数的图象平行于直线yx,且经过点A(2,3),与x轴交于点B(1)求这个一次函数的解析式;(2)设点C在y轴上,当ACBC时,求点C的坐标22(10分)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60时,箱盖ADE落在ADE的位置(如图2所示)已知AD90厘米,DE30厘米,EC40厘米
6、(1)求点D到BC的距离;(2)求E、E两点的距离23(12分)已知:如图,AB、AC是O的两条弦,且ABAC,D是AO延长线上一点,联结BD并延长交O于点E,联结CD并延长交O于点F(1)求证:BDCD;(2)如果AB2AOAD,求证:四边形ABDC是菱形24(12分)在平面直角坐标系xOy中(如图),已知抛物线yx22x,其顶点为A(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”试求抛物线yx22x的“不动点”的坐标;平移抛物线yx22x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交
7、于点C,且四边形OABC是梯形,求新抛物线的表达式25(14分)如图1,AD、BD分别是ABC的内角BAC、ABC的平分线,过点A作AEAD,交BD的延长线于点E(1)求证:EC;(2)如图2,如果AEAB,且BD:DE2:3,求cosABC的值;(3)如果ABC是锐角,且ABC与ADE相似,求ABC的度数,并直接写出的值2019年上海市中考数学试卷参考答案与试题解析一、选择题:(本大题共6题.每题4分,满分24【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1(4分)下列运算正确的是()A3x+2x5x2B3x2xxC3x2x6xD3x2x【分析
8、】根据整式的运算法则即可求出答案【解答】解:(A)原式5x,故A错误;(C)原式6x2,故C错误;(D)原式,故D错误;故选:B2(4分)如果mn,那么下列结论错误的是()Am+2n+2Bm2n2C2m2nD2m2n【分析】根据不等式的性质即可求出答案【解答】解:mn,2m2n,故选:D3(4分)下列函数中,函数值y随自变量x的值增大而增大的是()AyByCyDy【分析】一次函数当a0时,函数值y总是随自变量x增大而增大,反比例函数当k0时,在每一个象限内,y随自变量x增大而增大【解答】解:A、该函数图象是直线,位于第一、三象限,y随x的增大而增大,故本选项正确B、该函数图象是直线,位于第二、
9、四象限,y随x的增大而减小,故本选项错误C、该函数图象是双曲线,位于第一、三象限,在每一象限内,y随x的增大而减小,故本选项错误D、该函数图象是双曲线,位于第二、四象限,在每一象限内,y随x的增大而增大,故本选项错误故选:A4(4分)甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A甲的成绩比乙稳定B甲的最好成绩比乙高C甲的成绩的平均数比乙大D甲的成绩的中位数比乙大【分析】分别计算出两人成绩的平均数、中位数、方差可得出答案【解答】解:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为(78)2+3(88)2+(98)20.4;乙同学的
10、成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为(68)2+(78)2+(88)2+(98)2+(108)22,甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低,故选:A5(4分)下列命题中,假命题是()A矩形的对角线相等B矩形对角线交点到四个顶点的距离相等C矩形的对角线互相平分D矩形对角线交点到四条边的距离相等【分析】利用矩形的性质分别判断后即可确定正确的选项【解答】解:A、矩形的对角线相等,正确,是真命题;B、矩形的对角线的交点到四个顶点的距离相等,正确,是真命题;C、矩形的对角线互相平分,正确,是真命题;D、矩形的对角线的交点到一组对边的距离相等,
11、故错误,是假命题,故选:D6(4分)已知A与B外切,C与A、B都内切,且AB5,AC6,BC7,那么C的半径长是()A11B10C9D8【分析】如图,设A,B,C的半径为x,y,z构建方程组即可解决问题【解答】解:如图,设A,B,C的半径为x,y,z由题意:,解得,故选:C二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答纸的相应位置上】7(4分)计算:(2a2)24a4【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,计算即可【解答】解:(2a2)222a44a48(4分)已知f(x)x21,那么f(1)0【分析】根据自变量与函数值的对应关系,可得答
12、案【解答】解:当x1时,f(1)(1)210故答案为:09(4分)如果一个正方形的面积是3,那么它的边长是【分析】根据算术平方根的定义解答【解答】解:正方形的面积是3,它的边长是故答案为:10(4分)如果关于x的方程x2x+m0没有实数根,那么实数m的取值范围是m【分析】由于方程没有实数根,则其判别式0,由此可以建立关于m的不等式,解不等式即可求出m的取值范围【解答】解:由题意知14m0,m故填空答案:m11(4分)一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是【分析】先求出点数大于4的数,再根据概率公式求解即可【解答】解:在这6种情况中,掷的
13、点数大于4的有2种结果,掷的点数大于4的概率为,故答案为:12(4分)九章算术中有一道题的条件是:“今有大器五一容三斛,大器一小器五容二斛”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛斛米(注:斛是古代一种容量单位)【分析】直接利用5个大桶加上1个小桶可以盛米3斛,1个大桶加上5个小桶可以盛米2斛,分别得出等式组成方程组求出答案【解答】解:设1个大桶可以盛米x斛,1个小桶可以盛米y斛,则,故5x+x+y+5y5,则x+y答:1大桶加1小桶共盛斛米故答案为:13(4分)在登山过程中,海拔每升高1千米,气温下降6,已知某登山大本
14、营所在的位置的气温是2,登山队员从大本营出发登山,当海拔升高x千米时,所在位置的气温是y,那么y关于x的函数解析式是y6x+2【分析】根据登山队大本营所在地的气温为2,海拔每升高1km气温下降6,可求出y与x的关系式【解答】解:由题意得y与x之间的函数关系式为:y6x+2故答案为:y6x+214(4分)小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约90千克【分析】求出样
15、本中100千克垃圾中可回收垃圾的质量,再乘以可得答案【解答】解:估计该小区300户居民这一天投放的可回收垃圾共约10015%90(千克),故答案为:9015(4分)如图,已知直线11l2,含30角的三角板的直角顶点C在l1上,30角的顶点A在l2上,如果边AB与l1的交点D是AB的中点,那么1120度【分析】根据直角三角形斜边上的中线性质得到DADC,则DCADAC30,再利用三角形外角性质得到260,然后根据平行线的性质求1的度数【解答】解:D是斜边AB的中点,DADC,DCADAC30,2DCA+DAC60,11l2,1+2180,118060120故答案为12016(4分)如图,在正边形
16、ABCDEF中,设,那么向量用向量、表示为2+【分析】连接CF利用三角形法则:+,求出即可【解答】解:连接CF多边形ABCDEF是正六边形,ABCF,CF2BA,2,+,2+,故答案为2+17(4分)如图,在正方形ABCD中,E是边AD的中点将ABE沿直线BE翻折,点A落在点F处,联结DF,那么EDF的正切值是2【分析】由折叠可得AEFE,AEBFEB,由折叠的性质以及三角形外角性质,即可得到AEBEDF,进而得到tanEDFtanAEB2【解答】解:如图所示,由折叠可得AEFE,AEBFEBAEF,正方形ABCD中,E是AD的中点,AEDEADAB,DEFE,EDFEFD,又AEF是DEF的
17、外角,AEFEDF+EFD,EDFAEF,AEBEDF,tanEDFtanAEB2故答案为:218(4分)在ABC和A1B1C1中,已知CC190,ACA1C13,BC4,B1C12,点D、D1分别在边AB、A1B1上,且ACDC1A1D1,那么AD的长是【分析】根据勾股定理求得AB5,设ADx,则BD5x,根据全等三角形的性质得出C1D1ADx,A1C1D1A,A1D1C1CDA,即可求得C1D1B1BDC,根据等角的余角相等求得B1C1D1B,即可证得C1B1DBCD,根据其性质得出2,解得求出AD的长【解答】解:如图,在ABC和A1B1C1中,CC190,ACA1C13,BC4,B1C1
18、2,AB5,设ADx,则BD5x,ACDC1A1D1,C1D1ADx,A1C1D1A,A1D1C1CDA,C1D1B1BDC,B90A,B1C1D190A1C1D1,B1C1D1B,C1B1DBCD,即2,解得x,AD的长为,故答案为三、解答题(本大题共7题,满分78分)19(10分)计算:|1|+8【分析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可【解答】解:|1|+812+2+4320(10分)解方程:1【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【解答】解:去分母得:2x28x22x,即x2+2x80,分解因式
19、得:(x2)(x+4)0,解得:x2或x4,经检验x2是增根,分式方程的解为x421(10分)在平面直角坐标系xOy中(如图),已知一次函数的图象平行于直线yx,且经过点A(2,3),与x轴交于点B(1)求这个一次函数的解析式;(2)设点C在y轴上,当ACBC时,求点C的坐标【分析】(1)设一次函数的解析式为ykx+b,解方程即可得到结论;(2)求得一次函数的图形与x轴的解得为B(4,0),根据两点间的距离公式即可得到结论【解答】解:(1)设一次函数的解析式为:ykx+b,一次函数的图象平行于直线yx,k,一次函数的图象经过点A(2,3),3+b,b2,一次函数的解析式为yx+2;(2)由yx
20、+2,令y0,得x+20,x4,一次函数的图形与x轴的解得为B(4,0),点C在y轴上,设点C的坐标为(0,y),ACBC,y,经检验:y是原方程的根,点C的坐标是(0,)22(10分)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60时,箱盖ADE落在ADE的位置(如图2所示)已知AD90厘米,DE30厘米,EC40厘米(1)求点D到BC的距离;(2)求E、E两点的距离【分析】(1)过点D作DHBC,垂足为点H,交AD于点F,利用旋转的性质可得出ADAD90厘米,DAD60,利用矩形的性质可得出AFDBHD
21、90,在RtADF中,通过解直角三角形可求出DF的长,结合FHDCDE+CE及DHDF+FH可求出点D到BC的距离;(2)连接AE,AE,EE,利用旋转的性质可得出AEAE,EAE60,进而可得出AEE是等边三角形,利用等边三角形的性质可得出EEAE,在RtADE中,利用勾股定理可求出AE的长度,结合EEAE可得出E、E两点的距离【解答】解:(1)过点D作DHBC,垂足为点H,交AD于点F,如图3所示由题意,得:ADAD90厘米,DAD60四边形ABCD是矩形,ADBC,AFDBHD90在RtADF中,DFADsinDAD90sin6045厘米又CE40厘米,DE30厘米,FHDCDE+CE7
22、0厘米,DHDF+FH(45+70)厘米答:点D到BC的距离为(45+70)厘米(2)连接AE,AE,EE,如图4所示由题意,得:AEAE,EAE60,AEE是等边三角形,EEAE四边形ABCD是矩形,ADE90在RtADE中,AD90厘米,DE30厘米,AE30厘米,EE30厘米答:E、E两点的距离是30厘米23(12分)已知:如图,AB、AC是O的两条弦,且ABAC,D是AO延长线上一点,联结BD并延长交O于点E,联结CD并延长交O于点F(1)求证:BDCD;(2)如果AB2AOAD,求证:四边形ABDC是菱形【分析】(1)连接BC,根据ABAC,OBOAOC,即可得出AD垂直平分BC,根
23、据线段垂直平分线性质求出即可;(2)根据相似三角形的性质和判定求出ABOADBBAO,求出BDAB,再根据菱形的判定推出即可【解答】证明:(1)如图1,连接BC,OB,OC,AB、AC是O的两条弦,且ABAC,A在BC的垂直平分线上,OBOAOC,O在BC的垂直平分线上,AO垂直平分BC,BDCD;(2)如图2,连接OB,AB2AOAD,BAODAB,ABOADB,OBAADB,OAOB,OBAOAB,OABBDA,ABBD,ABAC,BDCD,ABACBDCD,四边形ABDC是菱形24(12分)在平面直角坐标系xOy中(如图),已知抛物线yx22x,其顶点为A(1)写出这条抛物线的开口方向、
24、顶点A的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”试求抛物线yx22x的“不动点”的坐标;平移抛物线yx22x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式【分析】(1)a10,故该抛物线开口向上,顶点A的坐标为(1,1);(2)设抛物线“不动点”坐标为(t,t),则tt22t,即可求解;新抛物线顶点B为“不动点”,则设点B(m,m),则新抛物线的对称轴为:xm,与x轴的交点C(m,0),四边形OABC是梯形,则直线xm在y轴左侧,而点A(1,1),点B(m,m),则m1
25、,即可求解【解答】解:(1)a10,故该抛物线开口向上,顶点A的坐标为(1,1);(2)设抛物线“不动点”坐标为(t,t),则tt22t,解得:t0或3,故“不动点”坐标为(0,0)或(3,3);新抛物线顶点B为“不动点”,则设点B(m,m),新抛物线的对称轴为:xm,与x轴的交点C(m,0),四边形OABC是梯形,直线xm在y轴左侧,BC与OA不平行,OCAB,又点A(1,1),点B(m,m),m1,故新抛物线是由抛物线yx22x向左平移2个单位得到的,新抛物线的表达式为:y(x+1)2125(14分)如图1,AD、BD分别是ABC的内角BAC、ABC的平分线,过点A作AEAD,交BD的延长
26、线于点E(1)求证:EC;(2)如图2,如果AEAB,且BD:DE2:3,求cosABC的值;(3)如果ABC是锐角,且ABC与ADE相似,求ABC的度数,并直接写出的值【分析】(1)由题意:E90ADE,证明ADE90C即可解决问题(2)延长AD交BC于点F证明AEBC,可得AFBEAD90,由BD:DE2:3,可得cosABC(3)因为ABC与ADE相似,DAE90,所以ABC中必有一个内角为90因为ABC是锐角,推出ABC90接下来分两种情形分别求解即可【解答】(1)证明:如图1中,AEAD,DAE90,E90ADE,AD平分BAC,BADBAC,同理ABDABC,ADEBAD+DBA,BAC+ABC180C,ADE(ABC+BAC)90C,E90(90C)C(2)解:延长AD交BC于点FABAE,ABEE,BE平分ABC,ABEEBC,ECBE,AEBC,AFBEAD90,BD:DE2:3,cosABC(3)ABC与ADE相似,DAE90,ABC中必有一个内角为90ABC是锐角,ABC90当BACDAE90时,EC,ABCEC,ABC+C90,ABC30,此时2当CDAE90时,C45,EDA45,ABC与ADE相似,ABC45,此时2综上所述,ABC30或45,2或2