高中数学必修一基本初等函数知识点+练习题含答案解析(非常详细)(DOC 13页).docx

上传人(卖家):2023DOC 文档编号:5649960 上传时间:2023-04-29 格式:DOCX 页数:13 大小:143.71KB
下载 相关 举报
高中数学必修一基本初等函数知识点+练习题含答案解析(非常详细)(DOC 13页).docx_第1页
第1页 / 共13页
高中数学必修一基本初等函数知识点+练习题含答案解析(非常详细)(DOC 13页).docx_第2页
第2页 / 共13页
高中数学必修一基本初等函数知识点+练习题含答案解析(非常详细)(DOC 13页).docx_第3页
第3页 / 共13页
高中数学必修一基本初等函数知识点+练习题含答案解析(非常详细)(DOC 13页).docx_第4页
第4页 / 共13页
高中数学必修一基本初等函数知识点+练习题含答案解析(非常详细)(DOC 13页).docx_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、第一部分基本初等函数知识点整理第二章 基本初等函数一、指数函数(一)指数1、 指数与指数幂的运算:复习初中整数指数幂的运算性质:am*an=am+n(am)n=amn(a*b)n=anbn2、根式的概念:一般地,若,那么叫做的次方根,其中1,且*当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数。此时,a的n次方根用符号 表示。当n为偶数时,正数的n次方根有两个,这两个数互为相反数。此时正数a的正的n次方根用符号 表示,负的n的次方根用符号 表示。正的n次方根与负的n次方根可以合并成 (a0)。注意:负数没有偶次方根;0的任何次方根都是0,记作。当是奇数时,当是偶数时,式子 叫做

2、根式,这里n叫做根指数,a叫做被开方数。 3、 分数指数幂 正数的分数指数幂的,0的正分数指数幂等于0,0的负分数指数幂没有意义4、 有理数指数米的运算性质(1);(2);(3)5、无理数指数幂一般的,无理数指数幂aa(a0,a是无理数)是一个确定的实数。有理数指数幂的运算性质同样使用于无理数指数幂。(二)、指数函数的性质及其特点1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R注意:指数函数的底数的取值范围,底数不能是负数、零和1为什么?2、指数函数的图象和性质a10a1时,若X1X2 ,则有f(X1)10a0成立,则x应满足的条件是()Ax B.x1 Cx1D0

3、x0且a1),则有a100得a().可得放射性元素满足y()x().当x3时,y().答案:D6函数ylog2x与ylogx的图象()A关于原点对称B关于x轴对称 C关于y轴对称D关于yx对称解析:据图象和代入式判定都可以做出判断,故选B.答案:B7函数ylg(1)的图象关于()Ax轴对称By轴对称 C原点对称Dyx对称解析:f(x)lg(1)lg,f(x)lgf(x),所以ylg(1)关于原点对称,故选C.答案:C8设abc1,则下列不等式中不正确的是()AacbcBlogablogac CcacbDlogbcb,则acbc;ylogax在(0,)上递增,因为bc,则logablogac;y

4、cx在(,)上递增,因为ab,则cacb.故选D.答案:D9已知f(x)loga(x1)(a0且a1),若当x(1,0)时,f(x)1.因而f(x)在(1,)上是增函数答案:A10设a,b,c,则a,b,c的大小关系是()AabcBbccaDabc解析:a,b,c.24312466,即ab1与0a1时,图象如下图1,满足题意 (2)当0af(1),则x的取值范围是()A(,1)B(0,)(1,)C(,10)D(0,1)(0,)解析:由于f(x)是偶函数且在(0,)上是减函数,所以f(1)f(1),且f(x)在(,0)上是增函数,应有解得x0,且a1)的反函数的图象过点(2,1),则a_.解析:

5、由互为反函数关系知,f(x)过点(1,2),代入得a12a.答案:14方程log2(x1)2log2(x1)的解为_解析:log2(x1)2log2(x1)log2(x1)log2,即x1,解得x(负值舍去),x.答案:15设函数f1(x)x,f2(x)x1,f3(x)x2,则f1(f2(f3(2007)_.解析:f1(f2(f3(2007)f1(f2(20072)f1(20072)1)(20072)120071.答案:16设0x2,则函数y4x32x5的最大值是_,最小值是_解析:设2xt(1t4),则y4x32x5t23t5(t3)2.当t3时,ymin;当t1时,ymax4.答案:三、解

6、答题(写出必要的计算步骤,只写最后结果不得分,共70分)17(10分)已知a(2)1,b(2)1,求(a1)2(b1)2的值解:(a1)2(b1)2(1)2(1)2()2()2()(74)(2)(74)(2)4.18(12分)已知关于x的方程4xa(8)2x40有一个根为2,求a的值和方程其余的根解:将x2代入方程中,得42a(8)2240,解得a2.当a2时,原方程为4x2(8)2x40,将此方程变形化为2(2x)2(8)2x40.令2xy,得2y2(8)y40.解得y4或y.当y4时,即2x4,解得x2;当y时,2x,解得x.综上,a2,方程其余的根为.19(12分)已知f(x),证明:f

7、(x)在区间(,)上是增函数证明:设任意x1,x2(,)且x1x2,则f(x1)f(x2).x1x2,2x12x2,即2x12x20.f(x1)0(a0,且a1)的解集解:f(x)是偶函数,且f(x)在0,)上递增,f()0,f(x)在(,0)上递减,f()0,则有logax,或logax1时,logax,或logax,或0x;(2)当0a,或logax,可得0x.综上可知,当a1时,f(logax)0的解集为(0,)(,);当0a0的解集为(0,)(,)21(12分)已知函数f(x)对一切实数x,y都满足f(xy)f(y)(x2y1)x,且f(1)0,(1)求f(0)的值;(2)求f(x)的

8、解析式;(3)当x0,时,f(x)32xa恒成立,求a的范围解:(1)令x1,y0,则f(1)f(0)(11)1,f(0)f(1)22.(2)令y0,则f(x)f(0)(x1)x,f(x)x2x2.(3)由f(x)3x2x1.设yx2x1,则yx2x1在(,上是减函数,所以yx2x1在0,上的范围为y1,从而可得a1.22(12分)设函数f(x)loga(1),其中0a1.解:(1)证明:设任意x1,x2(a,)且x1x2,则f(x1)f(x2)loga(1)loga(1)logalogalogaloga(1)loga1x1,x2(a,)且x1x2,x1x20,0ax10.0,11,又0a0,f(x1)f(x2),所以f(x)loga(1)在(a,)上为减函数(2)因为0a1loga(1)logaa解不等式,得xa或x0.解不等式,得0x.因为0a1,故x,所以原不等式的解集为x|ax

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 其他
版权提示 | 免责声明

1,本文(高中数学必修一基本初等函数知识点+练习题含答案解析(非常详细)(DOC 13页).docx)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|