1、精品文档 用心整理苏教版七年级下册数学重难点突破知识点梳理及重点题型巩固练习提公因式法(提高)【学习目标】1. 了解因式分解的意义,以及它与整式乘法的关系;2 能确定多项式各项的公因式,会用提公因式法将多项式分解因式.【要点梳理】【398715 提公因式法 知识要点】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.要点诠释:(1)因式分解只针对多项式,而不是针对单项式,是对这个多项式的整体,而不是部分,因式分解的结果只能是整式的积的形式. (2)要把一个多项式分解到每一个因式不能再分解为止. (3)因式分解和整式乘法是互逆的运算,二者不能
2、混淆.因式分解是一种恒等变形,而整式乘法是一种运算.要点二、公因式多项式的各项中都含有相同的因式,那么这个相同的因式就叫做公因式.要点诠释:(1)公因式必须是每一项中都含有的因式. (2)公因式可以是一个数,也可以是一个字母,还可以是一个多项式. (3)公因式的确定分为数字系数和字母两部分:公因式的系数是各项系数的最大公约数.字母是各项中相同的字母,指数取各字母指数最低的.要点三、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式,另一个因式是,即,而正好是除以所得的商,这种因式分解的方法叫提公因式法要点诠释:(1)提公因式法分解因式实际上是逆用乘法分配律,即 .(2)用
3、提公因式法分解因式的关键是准确找出多项式各项的公因式.(3)当多项式第一项的系数是负数时,通常先提出“”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号.(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“1”或“1”,不要把该项漏掉,或认为是0而出现错误.【典型例题】类型一、因式分解的概念1、下列由左到右的变形,哪些是因式分解?哪些不是?请说明理由(1);(2);(3);(4);(5)【思路点拨】根据因式分解的定义是将多项式形式变成几个整式的积的形式,从对象和结果两方面去判断.【答案与解析】 解:因为(1)(2)的右边都不是积的形式
4、,所以它们都不是因式分解;(4)的左边不是多项式而是一个单项式,(5)中的、都不是整式,所以(4)(5)也不是因式分解,只有(3)的左边是多项式,右边是整式的积的形式,所以只有(3)是因式分解【总结升华】因式分解是将多项式变成积的形式,所以等式的左边必须是多项式,将单项式拆成几个单项式乘积的形式不能称为因式分解等式的右边必须是整式因式积的形式举一反三:【变式】下列变形是因式分解的是 ( ) A. B. C. D.【答案】B;类型二、提公因式法分解因式2、(2016春山亭区期中)把下列各式分解因式:(1)2m(mn)28m2(nm)(2)8a2b+12ab24a3b3【思路点拨】(1)直接提取公
5、因式2m(mn),进而分解因式得出答案;(2)直接提取公因式4ab,进而分解因式得出答案【答案与解析】解:(1)2m(mn)28m2(nm)=2m(mn)(mn)+4m=2m(mn)(5mn);(2)8a2b+12ab24a3b3=4ab(2a3b+a2b2)【总结升华】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键举一反三:【变式】(2014春濉溪县期末)下列分解因式结果正确的是()A.ab+7abb=b(a+7a) B.3xy3xy+6y=3y(xx2)C.8xyz6xy=2xyz(43xy) D.2a+4ab6ac=2a(a2b+3c)【答案】D.解:A、原式=b(a+7a
6、+1),错误;B、原式=3y(xx+2),错误;C、原式=2xy(4z3xy),错误;D、原式=2a(a2b+3c),正确故选D类型三、提公因式法分解因式的应用【398715 提公因式法 例5】3、若、为的三边长,且,则按边分类,应是什么三角形?【答案与解析】解:当时,等式成立,当时,原式变为,得出,是等腰三角形.【总结升华】将原式分解因式,就可以得出三边之间的关系,从而判定三角形的类型.【398715 提公因式法 例6】4、对任意自然数(0),是30的倍数,请你判定一下这个说法的正确性,并说说理由.【答案与解析】解:为大于0的自然数,为偶数,15为30的倍数,即是30的倍数.【总结升华】判断是否为30的倍数,只需要把分解因式,看分解后有没有能够整除30的因式.举一反三:【变式】说明能被7整除.【答案】解:所以能被7整除.5、(2015春湘潭县期末)已知xy=3,满足x+y=2,求代数式xy+xy的值【思路点拨】将原式提取公因式xy,进而将已知代入求出结果即可【答案与解析】解:xy=3,x+y=2,xy+xy=xy(x+y)=32=6【总结升华】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键资料来源于网络 仅供免费交流使用