1、圆周运动匀速圆周运动1、定义:物体运动轨迹为圆称物体做圆周运动。2、分类:匀速圆周运动:质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动。物体在大小恒定而方向总跟速度的方向垂直的外力作用下所做的曲线运动。注意:这里的合力可以是万有引力卫星的运动、库仑力电子绕核旋转、洛仑兹力带电粒子在匀强磁场中的偏转、弹力绳拴着的物体在光滑水平面上绕绳的一端旋转、重力与弹力的合力锥摆、静摩擦力水平转盘上的物体等 变速圆周运动:如果物体受到约束,只能沿圆形轨道运动,而速率不断变化如小球被绳或杆约束着在竖直平面内运动,是变速率圆周运动合力的方向并不总跟速度方向垂直3、描述匀速圆周
2、运动的物理量(1)轨道半径(r):对于一般曲线运动,可以理解为曲率半径。(2)线速度(v):定义:质点沿圆周运动,质点通过的弧长S和所用时间t的比值,叫做匀速圆周运动的线速度。定义式:线速度是矢量:质点做匀速圆周运动某点线速度的方向就在圆周该点切线方向上,实际上,线速度是速度在曲线运动中的另一称谓,对于匀速圆周运动,线速度的大小等于平均速率。(3)角速度(,又称为圆频率):定义:质点沿圆周运动,质点和圆心的连线转过的角度跟所用时间的比值叫做匀速圆周运动的角速度。大小: (是t时间内半径转过的圆心角)单位:弧度每秒(rad/s)物理意义:描述质点绕圆心转动的快慢(4)周期(T):做匀速圆周运动的
3、物体运动一周所用的时间叫做周期。(5)频率(f,或转速n):物体在单位时间内完成的圆周运动的次数。各物理量之间的关系:注意:计算时,均采用国际单位制,角度的单位采用弧度制。(6)圆周运动的向心加速度定义:做匀速圆周运动的物体所具有的指向圆心的加速度叫向心加速度。大小:(还有其它的表示形式,如:)方向:其方向时刻改变且时刻指向圆心。对于一般的非匀速圆周运动,公式仍然适用,为物体的加速度的法向加速度分量,r为曲率半径;物体的另一加速度分量为切向加速度,表征速度大小改变的快慢(对匀速圆周运动而言,=0)(7)圆周运动的向心力匀速圆周运动的物体受到的合外力常常称为向心力,向心力的来源可以是任何性质的力
4、,常见的提供向心力的典型力有万有引力、洛仑兹力等。对于一般的非匀速圆周运动,物体受到的合力的法向分力提供向心加速度(下式仍然适用),切向分力提供切向加速度。向心力的大小为:(还有其它的表示形式,如:);向心力的方向时刻改变且时刻指向圆心。实际上,向心力公式是牛顿第二定律在匀速圆周运动中的具体表现形式。五、离心运动1、定义:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力情况下,就做远离圆心的运动,这种运动叫离心运动。2、本质:离心现象是物体惯性的表现。离心运动并非沿半径方向飞出的运动,而是运动半径越来越大的运动或沿切线方向飞出的运动。离心运动并不是受到什么离心力,根本就没有
5、这个离心力。3、条件:当物体受到的合外力时,物体做匀速圆周运动;当物体受到的合外力时,物体做离心运动当物体受到的合外力时,物体做近心运动实际上,这正是力对物体运动状态改变的作用的体现,外力改变,物体的运动情况也必然改变以适应外力的改变。4两类典型的曲线运动的分析方法比较(1)对于平抛运动这类“匀变速曲线运动”,我们的分析方法一般是“在固定的坐标系内正交分解其位移和速度”,运动规律可表示为;(2)对于匀速圆周运动这类“变变速曲线运动”,我们的分析方法一般是“在运动的坐标系内正交分解其力和加速度”,运动规律可表示为【例1】如图所示的传动装置中,A、B两轮同轴转动A、B、C三轮的半径大小的关系是RA
6、=RC=2RB当皮带不打滑时,三轮的角速度之比、三轮边缘的线速度大小之比、三轮边缘的向心加速度大小之比分别为多少?【例2】一圆盘可绕一通过圆盘中心O且垂直于盘面的竖直轴转动在圆盘上放置一木块,当圆盘匀速转时,木块随圆盘一起运动(见图),那么A木块受到圆盘对它的摩擦力,方向背离圆盘中心B木块受到圆盘对它的摩擦力,方向指向圆盘中心C因为木块随圆盘一起运动,所以木块受到圆盘对它的摩擦力,方向与木块的运动方向相同D因为摩擦力总是阻碍物体运动,所以木块所受圆盘对它的摩擦力的方向与木块的运动方向相反E因为二者是相对静止的,圆盘与木块之间无摩擦力【例3】在一个水平转台上放有A、B、C三个物体,它们跟台面间的
7、摩擦因数相同A的质量为2m,B、C各为mA、B离转轴均为r,C为2r则A若A、B、C三物体随转台一起转动未发生滑动,A、C的向心加速度比B大B若A、B、C三物体随转台一起转动未发生滑动,B所受的静摩擦力最小C当转台转速增加时,C最先发生滑动D当转台转速继续增加时,A比B先滑动【例4】如图,光滑的水平桌面上钉有两枚铁钉A、B,相距L0=0.1m长L=1m的柔软细线一端拴在A上,另一端拴住一个质量为500g的小球小球的初始位置在AB连线上A的一侧把细线拉直,给小球以2ms的垂直细线方向的水平速度,使它做圆周运动由于钉子B的存在,使细线逐步缠在A、B上若细线能承受的最大张力Tm=7N,则从开始运动到
8、细线断裂历时多长?【例5】如图(a)所示,在光滑的圆锥顶用长为L的细线悬挂一质量为m的小球,圆锥顶角为2,当圆锥和球一起以角速度匀速转动时,球压紧锥面此时绳的张力是多少?若要小球离开锥面,则小球的角速度至少为多少?【例6】杂技节目中的“水流星”表演,用一根绳子两端各拴一个盛水的杯子,演员抡起杯子在竖直面上做圆周运动,在最高点杯口朝下,但水不会流下,如下图所示,这是为什么?【例7】如下图所示,自行车和人的总质量为M,在一水平地面运动若自行车以速度v转过半径为R的弯道(1)求自行车的倾角应多大?(2)自行车所受的地面的摩擦力多大?【例8】用长L1=4m和长为L2=3m的两根细线,拴一质量m=2kg
9、的小球A,L1和L2的另两端点分别系在一竖直杆的O1,O2处,已知O1O2=5m如下图(g10ms-2)(1)当竖直杆以的角速度匀速转动时,O2A线刚好伸直且不受拉力求此时角速度1(2)当O1A线所受力为100N时,求此时的角速度21一质点做圆周运动,速度处处不为零,则:任何时刻质点所受的合力一定不为零,任何时刻质点的加速度一定不为零,质点速度的大小一定不断变化,质点速度的方向一定不断变化其中正确的是( )A B C D2火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定.若在某转弯处规定行驶速度为v,则下列说法中正确的是()当以速度v通过此弯路时,火车重力与轨道支持力的合力提供向
10、心力当以速度v通过此弯路时,火车重力、轨道支持力和外轨对轮缘弹力的合力提供向心力当速度大于v时,轮缘挤压外轨当速度小于v时,轮缘挤压外轨A.B.C.D.AB3如图所示,在皮带传动装置中,主动轮A和从动轮B半径不等,皮带与轮之间无相对滑动,则下列说法中正确的是( )A两轮的角速度相等B两轮边缘的线速度大小相等C两轮边缘的向心加速度大小相等D两轮转动的周期相同4用细线拴着一个小球,在光滑水平面上作匀速圆周运动,下列说法正确的是( )A小球线速度大小一定时,线越长越容易断B小球线速度大小一定时,线越短越容易断C小球角速度一定时,线越长越容易断OAD小球角速度一定时,线越短越容易断5长度为0.5m的轻
11、质细杆OA,A端有一质量为3kg的小球,以O点为圆心,在竖直平面内做圆周运动,如图所示,小球通过最高点时的速度为2m/s,取g=10m/s2,则此时轻杆OA将( )A受到6.0N的拉力 B受到6.0N的压力C受到24N的拉力 D受到24N的压力6滑块相对静止于转盘的水平面上,随盘一起旋转时所需向心力的来源是( )A滑块的重力 B盘面对滑块的弹力C盘面对滑块的静摩擦力 D以上三个力的合力BA7如图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A和B,在各自不同的水平面做匀速圆周运动,以下说法正确的是( )A.VAVB B.AB C.aAaB D.压力NANB8.一个电子钟的秒针角速
12、度为( )Arad/s B2rad/s Crad/s Drad/s9甲、乙、丙三个物体,甲放在广州,乙放在上海,丙放在北京当它们随地球一起转动时,则( )bOaA甲的角速度最大、乙的线速度最小B丙的角速度最小、甲的线速度最大C三个物体的角速度、周期和线速度都相等D三个物体的角速度、周期一样,丙的线速度最小10如图所示,细杆的一端与小球相连,可绕过O点的水平轴自由转动,现给小球一初速度,使它做圆周运动,图中a、b分别表示小球轨道的最低点和最高点。则杆对球的作用力可能是( )A.a处为拉力,b处为拉力 B.a处为拉力,b处为推力C.a处为推力,b处为拉力 D.a处为推力,b处推拉力11如图2-4-
13、10所示,光滑的水平面上,小球m在拉力的作用下做匀速圆周运动,若小球在到达点时突然发生变化,则下列说法正确的是( )A.若F突然消失,小球将沿轨迹a做离心运动B.若F突然变小,小球将沿轨迹a做离心运动C.若F突然变大,小球将沿轨迹b做离心运动D.若F突然变小,小球将沿轨迹c做近心运动1对于做匀速圆周运动的物体,下列说法错误的是:A.线速度不变 B.线速度的大小不变 C.转速不变 D.周期不变2一质点做圆周运动,速度处处不为零,则任何时刻质点所受的合力一定不为零任何时刻质点的加速度一定不为零质点速度的大小一定不断变化质点速度的方向一定不断变化其中正确的是A B C D3.关于做匀速圆周运动物体的
14、线速度的大小和方向,下列说法中正确的是A大小不变,方向也不变B大小不断改变,方向不变C大小不变,方向不断改变D大小不断改变,方向也不断改变4.做匀速圆周运动的质点是处于A平衡状态 B不平衡状态C速度不变的状态 D加速度不变的状态5.匀速圆周运动是A匀速运动 B匀加速运动C匀减速运动 D变加速运动6下列关于向心加速度的说法中,正确的是A向心加速度的方向始终与速度的方向垂直B向心加速度的方向可能与速度方向不垂直C向心加速度的方向保持不变D向心加速度的方向与速度的方向平行7如图所示,在皮带传动装置中,主动轮A和从动轮B半径不等,皮带与轮之间无相对滑动,则下列说法中正确的是ABA两轮的角速度相等B两轮
15、边缘的线速度大小相等C两轮边缘的向心加速度大小相等D两轮转动的周期相同8用细线拴着一个小球,在光滑水平面上作匀速圆周运动,有下列说法小球线速度大小一定时,线越长越容易断小球线速度大小一定时,线越短越容易断小球角速度一定时,线越长越容易断小球角速度一定时,线越短越容易断其中正确的是A B C DOA9长度为0.5m的轻质细杆OA,A端有一质量为3kg的小球,以O点为圆心,在竖直平面内做圆周运动,如图所示,小球通过最高点时的速度为2m/s,取g=10m/s2,则此时轻杆OA将A受到6.0N的拉力 B受到6.0N的压力C受到24N的拉力 D受到24N的压力10滑块相对静止于转盘的水平面上,随盘一起旋
16、转时所需向心力的来源是A滑块的重力 B盘面对滑块的弹力C盘面对滑块的静摩擦力 D以上三个力的合力11.一个电钟的秒针角速度为Arad/s B2rad/s Crad/s Drad/s12甲、乙、丙三个物体,甲放在广州,乙放在上海,丙放在北京当它们随地球一起转动时,则A甲的角速度最大、乙的线速度最小B丙的角速度最小、甲的线速度最大C三个物体的角速度、周期和线速度都相等D三个物体的角速度、周期一样,丙的线速度最小13关于匀速圆周运动,下列说法中不正确的是A匀速圆周运动是匀速率圆周运动B匀速圆周运动是向心力恒定的运动C匀速圆周运动是加速度的方向始终指向圆心的运动D匀速圆周运动是变加速运动BA14如图所
17、示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A和B,在各自不同的水平面做匀速圆周运动,以下说法正确的是A.VAVB B.AB C.aAaB D.压力NANBbOa15(多选)如图所示,细杆的一端与小球相连,可绕过O点的水平轴自由转动,现给小球一初速度,使它做圆周运动,图中a、b分别表示小球轨道的最低点和最高点。则杆对球的作用力可能是A.a处为拉力,b处为拉力 B.a处为拉力,b处为推力C.a处为推力,b处为拉力 D.a处为推力,b处推拉力1、物体做曲线运动时,下列说法中不可能存在的是:A速度的大小可以不发生变化而方向在不断地变化。B速度的方向可以不发生变化而大小在不断地变化C速度
18、的大小和方向都可以在不断地发生变化D加速度的方向在不断地发生变化2、关于曲线运动的说法中正确的是:A做曲线运动物体的加速度方向跟它的速度方向不在同一直线上B速度变化的运动必定是曲线运动C受恒力作用的物体不做曲线运动D加速度变化的运动必定是曲线运动3、关于运动的合成,下列说法中正确的是:A合运动的速度一定比每一个分运动的速度大B两个匀变速直线运动的合运动一定是曲线运动C只要两个分运动是直线运动,那么合运动也一定是直线运动D两个分运动的时间一定与它们合运动的时间相等4、关于做平抛运动的物体,下列说法中正确的是: A从同一高度以不同速度水平抛出的物体,在空中的运动时间不同B以相同速度从不同高度水平抛
19、出的物体,在空中的运动时间相同C平抛初速度越大的物体,水平位移一定越大D做平抛运动的物体,落地时的速度与抛出时的速度大小和抛出时的高度有关5、一物体从某高度以初速度水平抛出,落地时速度大小为,则它的运动时间为: A B C D 6、做匀速圆周运动的物体,下列哪些量是不变的:A线速度 B角速度 C向心加速度 D向心力7、关于圆周运动的向心加速度的物理意义,下列说法中正确的是:A它描述的是线速度大小变化的快慢B它描述的是角速度大小变化的快慢C它描述的是线速度方向变化的快慢D以上说法均不正确8、如图所示,为一在水平面内做匀速圆周运动的圆锥摆,关于摆球A的受力情况,下列说法中正确的是:A摆球A受重力、
20、拉力和向心力的作用B摆球A受拉力和向心力的作用C摆球A受拉力和重力的作用D摆球A受重力和向心力的作用 、如图所示,小物块A与圆盘保持相对静止,跟着圆盘一起作匀速圆周运动,则下列关于A的受力情况说法正确的是A受重力、支持力B受重力、支持力和指向圆心的摩擦力C受重力、支持力、摩擦力和向心力D受重力、支持力和与运动方向相同的摩擦力10、质量为的汽车,以速率通过半径为 r 的凹形桥,在桥面最低点时汽车对桥面的压力大小是:A B C D 21如图所示,长为R的轻质杆(质量不计),一端系一质量为的小球(球大小不计),绕杆的另一端O在竖直平面内做匀速圆周运动,若小球最低点时,杆对球的拉力大小为1.5,求:
21、小球最低点时的线速度大小?小球通过最高点时,杆对球的作用力的大小?小球以多大的线速度运动,通过最高处时杆对球不施力?22如图所示,轨道ABCD的AB段为一半径R=0.2的光滑1/4圆形轨道,BC段为高为h=5的竖直轨道,CD段为水平轨道。一质量为0.1的小球由A点从静止开始下滑到B点时速度的大小为2/s,离开B点做平抛运动(g取10/s2),求:小球离开B点后,在CD轨道上的落地点到C的水平距离; 小球到达B点时对圆形轨道的压力大小?如果在BCD轨道上放置一个倾角45的斜面(如图中虚线所示),那么小球离开B点后能否落到斜面上?如果能,求它第一次落在斜面上的位置。参考答案:【例1】【解】由于皮带
22、不打滑,因此,B、C两轮边缘线速度大小相等,设vB=vC=v由v=R得两轮角速度大小的关系BC=RCRB=21因A、B两轮同轴转动,角速度相等,即A=B,所以A、B、C三轮角速度之比ABC=221因A轮边缘的线速度vA=ARA=2BRB=2vB,所以A、B、C三轮边缘线速度之比vAvBvC=211根据向心加速度公式a=2R,所以A、B、C三轮边缘向心加速度之比=842=421【例2】以木块为研究对象进行受力分析:在竖直方向受到重力和盘面的支持力,它处于力平衡状态在盘面方向,可能受到的力只有来自盘面的摩擦力(静摩擦力),木块正是依靠盘面的摩擦力作为向心力使它随圆盘一起匀速转动所以,这个摩擦力的方
23、向必沿半径指向中心【答】B【例3】【分析】A、 B、 C三物体随转台一起转动时,它们的角速度都等于转台的角速度,设为根据向心加速度的公式an=2r,已知rA=rBrC,所以三物体向心加速度的大小关系为aA=aBaCA错三物体随转台一起转动时,由转台的静摩擦力提供向心力,即f =Fn=m2r,所以三物体受到的静摩擦力的大小分别为fA=mA2rA=2m2r,fB=mB2rB=m2r,fC=mc2rc =m22r=2m2r即物体B所受静摩擦力最小B正确由于转台对物体的静摩擦力有一个最大值,设相互间摩擦因数为,静摩擦力的最大值可认为是fm=mg由fm=Fn,即得不发生滑动的最大角速度为即离转台中心越远
24、的物体,使它不发生滑动时转台的最大角速度越小由于rCrA=rB,所以当转台的转速逐渐增加时,物体C最先发生滑动转速继续增加时,物体A、B将同时发生滑动C正确,D错【答】B、C【例4】【解】小球交替地绕A、B作匀速圆周运动,因线速度不变,随着转动半径的减小,线中张力T不断增大,每转半圈的时间t不断减小令Tn=Tm=7N,得n=8,所以经历的时间为【例5】【分析】小球在水平面内做匀速圆周运动,由绳子的张力和锥面的支持力两者的合力提供向心力,在竖直方向则合外力为零。由此根据牛顿第二定律列方程,即可求得解答。【解】对小球进行受力分析如图(b)所示,根据牛顿第二定律,向心方向上有Tsin-Ncos=m2
25、r y方向上应有Nsin+Tcos-G=0 r = Lsin由、式可得T = mgcos+m2Lsin当小球刚好离开锥面时N=0(临界条件)则有Tsin=m2r Tcos-G=0 【例6】【分析】水和杯子一起在竖直面内做圆周运动,需要提供一个向心力。当水杯在最低点时,水做圆周运动的向心力由杯底的支持力提供,当水杯在最高点时,水做圆周运动的向心力由重力和杯底的压力共同提供。只要做圆周运动的速度足够快,所需向心力足够大,水杯在最高点时,水就不会流下来。【解】以杯中之水为研究对象,进行受力分析,根据牛顿第二定律【例7】【解】(1)由图可知,向心力F=Mgtg,由牛顿第二定律有:(2)由图可知,向心力
26、F可看做合力Q在水平方向的分力,而Q又是水平方向的静摩擦力f和支持力N的合力,所以静摩擦力f在数值上就等于向心力F,即f = Mgtg【例8】【分析】小球做圆周运动所需的向心力由两条细线的拉力提供,当小球的运动速度不同时,所受拉力就不同。【解】(1)当O2A线刚伸直而不受力时,受力如图所示。则F1cos=mg F1sin=mR12 由几何知识知R=2.4m=37代入式1=1.77(rad/s)(2)当O1A受力为100N时,由(1)式F1cos=1000.8=80(N)mg由此知O2A受拉力F2。则对A受力分析得F1cos-F2sin-mg=0 F1sin+F2cos= mR22 由式(4)(
27、5)得12345678BABBCBCAD9101112131415DABA12345678ABCBDABC9101112131415BCDDBAAB题号12345678910答案BADDDBCCBD21题12分,解:(1)小球过最低点时受重力和杆的拉力作用,由向心力公式知TG 解得(4分)2)小球以线速度通过最高点时所需的向心力小于,故杆对小球施加支持力FN的作用,小球所受重力G和支持力FN的合力提供向心力,G FN,解得FN(4分)3)小球过最高点时所需的向心力等于重力时杆对球不施力,解得(4分)22题12分解:设小球离开B点做平抛运动的时间为t1,落地点到C点距离为s由h =gt12 得:
28、 t1=s = 1 s(2分)s = vBt1 = 21 m = 2 m(2分) 小球达B受重力G和向上的弹力F作用,由牛顿第二定律知 解得F3N(2分)由牛顿第三定律知球对B的压力,即小球到达B点时对圆形轨道的压力大小为3N,方向竖直向下。(1分)如图,斜面BEC的倾角=45,CE长d = h = 5m因为d s,所以小球离开B点后能落在斜面上 (1分)(说明:其它解释合理的同样给分。)假设小球第一次落在斜面上F点,BF长为L,小球从B点到F点的时间为t2Lcos= vBt2Lsin=gt22联立、两式得t2 = 0.4s (1分)L =m = 0.8m = 1.13m(3分)说明:关于F点的位置,其它表达正确的同样给分。- 17 - / 17