1、 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高二立体几何练习题(理科附答案)高2013级理科立体几何练习题答案1(重庆理19)如图,在四面体中,平面平面,. ()若,求四面体的体积; () 若二面角为,求异面直线与所成角的余弦值. (I)解:如答(19)图1,设F为AC的中点,由于AD=CD,所以DFAC.故由平面ABC平面ACD,知DF平面ABC,即DF是四面体ABCD的面ABC上的高,且DF=ADsin30=1,AF=ADcos30=.在RtABC中,因AC=2AF=,AB=2BC,由勾股定理易知故四面体ABCD的体积 (II)解法一:如答(19)图1,设
2、G,H分别为边CD,BD的中点,则FG/AD,GH/BC,从而FGH是异面直线AD与BC所成的角或其补角. 设E为边AB的中点,则EF/BC,由ABBC,知EFAB.又由(I)有DF平面ABC, 故由三垂线定理知DEAB.所以DEF为二面角CABD的平面角,由题设知DEF=60设在从而因RtADERtBDE,故BD=AD=a,从而,在RtBDF中,又从而在FGH中,因FG=FH,由余弦定理得因此,异面直线AD与BC所成角的余弦值为解法二:如答(19)图2,过F作FMAC,交AB于M,已知AD=CD,平面ABC平面ACD,易知FC,FD,FM两两垂直,以F为原点,射线FM,FC,FD分别为x轴,
3、y轴,z轴的正半轴,建立空间直角坐标系Fxyz.不妨设AD=2,由CD=AD,CAD=30,易知点A,C,D的坐标分别为显然向量是平面ABC的法向量.已知二面角CABD为60,故可取平面ABD的单位法向量,使得设点B的坐标为,有易知与坐标系的建立方式不合,舍去.因此点B的坐标为所以从而故异面直线AD与BC所成的角的余弦值为2(北京理16)如图,在四棱锥中,平面,底面是菱形,.()求证:平面()若求与所成角的余弦值;()当平面与平面垂直时,求的长.解()证明:因为四边形ABCD是菱形,所以ACBD.又因为PA平面ABCD.所以PABD.所以BD平面PAC.()设ACBD=O.因为BAD=60,P
4、A=PB=2,所以BO=1,AO=CO=.如图,以O为坐标原点,建立空间直角坐标系Oxyz,则P(0,2),A(0,0),B(1,0,0),C(0,0).所以设PB与AC所成角为,则.()由()知设P(0,t)(t0),则设平面PBC的法向量,则所以令则所以同理,平面PDC的法向量因为平面PCB平面PDC,所以=0,即解得所以PA=3(天津理17)如图,在三棱柱中,是正方形的中心,平面,且()求异面直线AC与A1B1所成角的余弦值;()求二面角的正弦值;()设为棱的中点,点在平面内,且平面,求线段的长解:方法一:如图所示,建立空间直角坐标系,点B为坐标原点. 依题意得 (I)解:易得, 于是
5、所以异面直线AC与A1B1所成角的余弦值为 (II)解:易知 设平面AA1C1的法向量, 则即 不妨令可得, 同样地,设平面A1B1C1的法向量, 则即不妨令,可得于是从而所以二面角AA1C1B的正弦值为 (III)解:由N为棱B1C1的中点,得设M(a,b,0),则由平面A1B1C1,得即解得故因此,所以线段BM的长为方法二:(I)解:由于AC/A1C1,故是异面直线AC与A1B1所成的角.因为平面AA1B1B,又H为正方形AA1B1B的中心,可得因此所以异面直线AC与A1B1所成角的余弦值为(II)解:连接AC1,易知AC1=B1C1,又由于AA1=B1A1,A1C1=A1=C1,所以,过
6、点A作于点R,连接B1R,于是,故为二面角AA1C1B1的平面角.在中,连接AB1,在中,从而所以二面角AA1C1B1的正弦值为(III)解:因为平面A1B1C1,所以取HB1中点D,连接ND,由于N是棱B1C1中点,所以ND/C1H且.又平面AA1B1B,所以平面AA1B1B,故又所以平面MND,连接MD并延长交A1B1于点E,则由得,延长EM交AB于点F,可得连接NE.在中,所以可得连接BM,在中,4.(陕西理16) 如图,在中,是上的高,沿把折起,使。()证明:平面平面;()设为的中点,求与夹角的余弦值。解()折起前是边上的高,当折起后,AD,AD,又DB,平面,AD 平面平面BDC平面
7、ABD平面BDC。()由及()知DA,DC两两垂直,不防设=1,以D为坐标原点,以所在直线轴建立如图所示的空间直角坐标系,易得D(0,0,0),B(1,0,0),C(0,3,0),A(0,0,),E(,0),=,=(1,0,0,),与夹角的余弦值为,=5(全国新课标理18) 如图,四棱锥中,底面ABCD为平行四边形,底面ABCD(I)证明:;(II)若PD=AD,求二面角A-PB-C的余弦值解:()因为, 由余弦定理得从而BD2+AD2= AB2,故BDAD又PD底面ABCD,可得BDPD所以BD平面PAD. 故 PABD()如图,以D为坐标原点,AD的长为单位长,射线DA为轴的正半轴建立空间
8、直角坐标系D-,则,设平面PAB的法向量为n=(x,y,z),则 即 因此可取n=设平面PBC的法向量为m,则 可取m=(0,-1,) 故二面角A-PB-C的余弦值为 6.(四川理19) 如图,在直三棱柱ABC-A1B1C1中 BAC=90,AB=AC=AA1 =1D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1平面BDA(I)求证:CD=C1D:(II)求二面角A-A1D-B的平面角的余弦值; ()求点C到平面B1DP的距离解:(1)连接交于,又为的中点,中点,,D为的中点。(2)由题意,过B 作,连接,则,为二面角的平面角。在中,,则(3)因为,所以,在中,7.(福建理
9、20) 如图,四棱锥P-ABCD中,PA底面ABCD,四边形ABCD中,ABAD,AB+AD=4,CD=,(I)求证:平面PAB平面PAD;(II)设AB=AP (i)若直线PB与平面PCD所成的角为,求线段AB的长; (ii)在线段AD上是否存在一个点G,使得点G到点P,B,C,D的距离都相等?说明理由。解法一:(I)因为平面ABCD,平面ABCD,所以,又所以平面PAD。又平面PAB,所以平面平面PAD。(II)以A为坐标原点,建立空间直角坐标系Axyz(如图)在平面ABCD内,作CE/AB交AD于点E,则在中,DE=,设AB=AP=t,则B(t,0,0),P(0,0,t)由AB+AD=4
10、,得AD=4-t,所以,(i)设平面PCD的法向量为,由,得取,得平面PCD的一个法向量,又,故由直线PB与平面PCD所成的角为,得解得(舍去,因为AD),所以(ii)假设在线段AD上存在一个点G,使得点G到点P,B,C,D的距离都相等,设G(0,m,0)(其中)则,由得,(2)由(1)、(2)消去t,化简得(3)由于方程(3)没有实数根,所以在线段AD上不存在一个点G,使得点G到点P,C,D的距离都相等。从而,在线段AD上不存在一个点G,使得点G到点P,B,C,D的距离都相等。解法二:(I)同解法一。(II)(i)以A为坐标原点,建立空间直角坐标系Axyz(如图)在平面ABCD内,作CE/A
11、B交AD于E,则。在平面ABCD内,作CE/AB交AD于点E,则在中,DE=,设AB=AP=t,则B(t,0,0),P(0,0,t)由AB+AD=4,得AD=4-t,所以,设平面PCD的法向量为,由,得取,得平面PCD的一个法向量,又,故由直线PB与平面PCD所成的角为,得解得(舍去,因为AD),所以(ii)假设在线段AD上存在一个点G,使得点G到点P,B,C,D的距离都相等,由GC=CD,得,从而,即设,在中,这与GB=GD矛盾。所以在线段AD上不存在一个点G,使得点G到点B,C,D的距离都相等,从而,在线段AD上不存在一个点G,使得点G到点P,B,C,D的距离都相等。8.(湖北理18) 如
12、图,已知正三棱柱的各棱长都是4,是的中点,动点在侧棱上,且不与点重合()当=1时,求证:;()设二面角的大小为,求的最小值解法1:过E作于N,连结EF。 (I)如图1,连结NF、AC1,由直棱柱的性质知, 底面ABC侧面A1C。 又度面侧面A,C=AC,且底面ABC, 所以侧面A1C,NF为EF在侧面A1C内的射影,在中,=1,则由,得NF/AC1,又故。由三垂线定理知(II)如图2,连结AF,过N作于M,连结ME。由(I)知侧面A1C,根据三垂线定理得所以是二面角CAFE的平面角,即,设在中,在故又故当时,达到最小值;,此时F与C1重合。解法2:(I)建立如图3所示的空间直角坐标系,则由已知
13、可得于是则故(II)设,平面AEF的一个法向量为,则由(I)得F(0,4,),于是由可得取 又由直三棱柱的性质可取侧面AC1的一个法向量为, 于是由为锐角可得, 所以, 由,得,即故当,即点F与点C1重合时,取得最小值9如图,在三棱锥P-ABC中,ABBC,ABBCkPA,点O、D分别是AC、PC的中点,OP平面ABC当k时,求直线PA与平面PBC所成角的正弦值; 当k为何值时,O在平面PBC内的射影恰好为PBC的重心?解:连OB,由ABBC得OAOB,又OP平面ABC,得OPOA,OPOB故以O为原点,射线OA、OB、OP分别为、y、z轴的正半轴建立空间直角坐标系设ABa,OPh,则A(a,
14、0,0),B(0,a,0),C(a, 0,0),P(0,0,h)当k时,P(0,0,a),(a,0,a)可求得平面PBC的一个法向量为(1,1,),cos,即直线PA与平面PBC所成角的正弦值为; PBC的重心G(a,a,h)若O在平面PBC内的射影恰好为PBC的重心G,需OG平面PBC,即OGPB,且OGBC由(a,a,h)(0,a,h )0,解得ha从而(a,a,h)(0,a,a)a2ah0当ha时,O在平面PBC内的射影恰好为PBC的重心G,此时PAa故k1时,O在平面PBC内的射影恰好为PBC的重心(此时三棱锥O-PBC为正三棱锥)BVADC10如图,在三棱锥V-ABC中,VC底面AB
15、C,ACBC,D是AB的中点,且ACBCa,VDC(0)求证:平面VABVCD; 当角变化时,求直线BC与平面VAB所成的角的取值范围解:以CA、CB、CV所在的直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则C(0,0,0),A(a,0,0),B(0,a,0),D(,0),V(0,0,tan),即,即又,平面设直线BC与平面所成的角为,平面VAB的一个法向量为则由,得,可取又,于是,又,即直线与平面所成角的取值范围为11.(本小题12分)如图,在三棱锥中,是边长为4的正三角形,平面平面,为的中点.(1)证明:;(2)求二面角的余弦值;(3)求点到平面的距离.解:(1)证明:取的中
16、点,连接因为,所以且.因为平面平面,平面平面,所以平面所以.如右图所示,建立空间直角坐标系则所以因为所以(2)由(1)得,所以设为平面的一个法向量,则,取,则 所以又因为为平面的一个法向量,所以所以二面角的余弦值为.(3)由(1)(2)可得,为平面的一个法向量.所以点到平面的距离12.(浙江理20) 如图,在三棱锥中,D为BC的中点,PO平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2()证明:APBC;()在线段AP上是否存在点M,使得二面角A-MC-B为直二面角?若存在,求出AM的长;若不存在,请说明理由。方法一: (I)证明:如图,以O为原点,以射线OP为z轴的正半轴,建立空间直角坐标系Oxyz则,由此可得,所以,即(II)解:设设平面BMC的法向量,平面APC的法向量由得即由即得由解得,故AM=3。综上所述,存在点M符合题意,AM=3。方法二:(I)证明:由AB=AC,D是BC的中点,得又平面ABC,得因为,所以平面PAD,故(II)解:如图,在平面PAB内作于M,连CM,由(I)中知,得平面BMC,又平面APC,所以平面BMC平面APC。在在,在所以在又从而PM,所以AM=PA-PM=3。综上所述,存在点M符合题意,AM=3。23