1、函数(一)1反比例函数、一次函数基础题(1) 其中是y关于x的反比例函数的有: _(2)如图,正比例函数与反比例函数的图象相交于A、C两点,过点A作AB轴于点B,连结BC则ABC的面积等于()A1B2C4D随的取值改变而改变OACB(3)如果是的反比例函数,是的反比例函数,那么是的( ) A反比例函数 B正比例函数 C一次函数 D反比例或正比例函数(4)如果是的正比例函数,是的反比例函数,那么是的( )(5)如果是的正比例函数,是的正比例函数,那么是的( )(6)反比例函数的图象经过(2,5)和(, ),求(1)的值;(2)判断点B(,)是否在这个函数图象上,并说明理由(7)已知函数,其中与成
2、正比例, 与成反比例,且当1时,1;3时,5求:(1)求关于的函数解析式;(2)当2时,的值(8)若反比例函数的图象在第二、四象限,则的值是( )A、 1或1; B、小于的任意实数; C、1; 、不能确定O(9)已知,函数和函数在同一坐标系内的图象大致是( )OOODBCA(10)正比例函数和反比例函数的图象有 个交点(11)正比例函数的图象与反比例函数的图象相交于点A(1,),则(12)下列函数中,当时,随的增大而增大的是()A B CD(13)老师给出一个函数,甲、乙、丙三位同学分别指出了这个函数的一个性质:甲:函数的图象经过第二象限; 乙:函数的图象经过第四象限; 丙:在每个象限内,y随
3、x的增大而增大请你根据他们的叙述构造满足上述性质的一个函数: .oyxyxoyxoyxoABCD(14)矩形的面积为6cm2,那么它的长(cm)与宽(cm)之间的函数关系用图象表示为( )(15)反比例函数y=(k0)在第一象限内的图象如图,点M(x,y)是图象上一点,MP垂直x轴于点P, MQ垂直y轴于点Q; 如果矩形OPMQ的面积为2,则k=_;PM(x,y) 如果MOP的面积=_.(一)2反比例函数、一次函数提高题1、函数和函数的图象有 个交点;2、反比例函数的图象经过(,5)点、()及()点,则 , , ;3、已知-2与成反比例,当=3时,=1,则与间的函数关系式为 ;4、已知正比例函
4、数与反比例函数的图象都过A(,1),则 ,正比例函数与反比例函数的解析式分别是 、 ;6、是关于的反比例函数,且图象在第二、四象限,则的值为 ;7、若与3成反比例,与成正比例,则是的()A正比例函数 B 反比例函数 C 一次函数D不能确定8、若反比例函数的图象在第二、四象限,则的值是( )A、 1或1 B、小于的任意实数 C、 1 、 不能确定10、在同一直角坐标平面内,如果直线与双曲线没有交点,那么和的关系一定是( )A 、0B 、0, 0C 、同号D 、异号11、已知反比例函数的图象上有两点A(,),B(,),且,则的值是( )A、正数 B、 负数 C、 非正数 D、 不能确定12、在同一
5、坐标系中,函数和的图象大致是 ( )A B C D13、已知直线与反比例函数的图象交于AB两点,且点A的纵坐标为-1,点B的横坐标为2,求这两个函数的解析式.14、已知函数,其中成正比例,成反比例,且当15、已知,正比例函数图象上的点的横坐标与纵坐标互为相反数,反比例函数在每一象限内的增大而减小,一次函数过点.(1)求的值.(2)求一次函数和反比例函数的解析式.(二)1二次函数基础题 1、若函数y是二次函数,则 。2、二次函数开口向上,过点(1,3),请你写出一个满足条件的函数 。3、二次函数yx+x-6的图象:1)与轴的交点坐标 ; 2)与x轴的交点坐标 ;3)当x取 时,0; 4)当x取
6、时,0。4、把函数y配成顶点式 ;顶点 ,对称轴 ,当x取 时,函数y有最_值是_。5、函数yx-x+8的顶点在x轴上,则= 。6、抛物线y=x2左平移2个单位,再向下平移4个单位,得到的解析式是 ,顶点坐标 。抛物线y=x2向右移3个单位得解析式是 7、如果点(,1)在y+2上,则 。8、函数y=x 对称轴是_,顶点坐标是_。9、函数y= 对称轴是_,顶点坐标_,当 时随的增大而减少。 10、函数yx的图象与x轴的交点有 个,且交点坐标是 _。11、yx)yy=二次函数有 个。15、二次函数过与(2,)求解析式。12画函数的图象,利用图象回答问题。求方程的解;取什么时,0。 13、把二次函数
7、y=2xx+4;1)配成y(x-)+的形式,(2)画出这个函数的图象;(3)写出它的开口方向、对称轴和顶点坐标(二)2二次函数中等题1当时,二次函数的值是4,则2二次函数经过点(2,0),则当时,3矩形周长为16cm,它的一边长为cm,面积为cm2,则与之间函数关系式为4一个正方形的面积为16cm2,当把边长增加cm时,正方形面积增加cm2,则关于的函数解析式为5二次函数的图象是,其开口方向由_来确定6与抛物线关于轴对称的抛物线的解析式为。7抛物线向上平移2个单位长度,所得抛物线的解析式为。8一个二次函数的图象顶点坐标为(2,1),形状与抛物线相同,这个函数解析式为。9.二次函数与x轴的交点个
8、数是( )A0 B1 C2 D 10把配方成的形式为:11如果抛物线与轴有交点,则的取值范围是12方程的两根为3,1,则抛物线的对称轴是。13已知直线与两个坐标轴的交点是A、B,把平移后经过A、B两点,则平移后的二次函数解析式为_14二次函数, _,函数图象与轴有_个交点。15二次函数的顶点坐标是;当_时,随增大而增大;当 _时, 随增大而减小。11O(第18题)16二次函数,则图象顶点坐标为_,当_时,17抛物线的顶点在轴上,则a、b、c中018如图是的图象,则0; 0;9填表指出下列函数的各个特征。函数解析式开口方向对称轴顶点坐标最大或最小值与轴的交点坐标与轴有无交点和交点坐标(二)2二次
9、函数提高题1 是二次函数,则的值为( )A0或3B0或3C0D32已知二次函数与轴的一个交点A(2,0),则值为( )A2B1C2或1D任何实数3与形状相同的抛物线解析式为( )ABCD4关于二次函数,下列说法中正确的是( )A若,则随增大而增大B时,随增大而增大。C时,随增大而增大D若,则有最小值5函数经过的象限是( )A第一、二、三象限 B第一、二象限 C第三、四象限 D第一、二、四象限6已知抛物线,当时,它的图象经过()A第一、二、三象限 B第一、二、四象限 C第一、三、四象限 D第一、二、三、四象限7可由下列哪个函数的图象向右平移1个单位,下平移2个单位得到()A、BCD8对的叙述正确
10、的是( )A当1时,最大值2B当1时,最大值8C当1时,最大值8D当1时,最大值29根据下列条件求关于的二次函数的解析式:(1) 当1时,0;0时,2;2 时,3 (2) 图象过点(0,2)、(1,2),且对称轴为直线(3) 图象经过(0,1)、(1,0)、(3,0)(4) 当3时,y最小值1,且图象过(0,7)(5) 抛物线顶点坐标为(1,2),且过点(1,10)10二次函数的图象过点(1,0)、(0,3),对称轴1求函数解析式; 图象与轴交于A、B(A在B左侧),与y轴交于C,顶点为D,求四边形ABCD的面积11 若二次函数的图象经过原点,求:二次函数的解析式;它的图象与轴交点O、A及顶点
11、C所组成的OAC面积12、抛物线与的形状相同,而开口方向相反,则=( )(A) (B) (C) (D)13与抛物线的形状大小开口方向相同,只有位置不同的抛物线是( )AB CD14二次函数的图象上有两点(3,8)和(5,8),则此拋物线的对称轴是( )A4 B. 3 C. 5 D. 1。15抛物线的图象过原点,则为( )A0 B1 C1 D116把二次函数配方成顶点式为( )AB CD17二次函数的图象如图所示,则,这四个式子中, 值为正数的有( )A4个B3个C2个D1个18直角坐标平面上将二次函数y-2(x1)22的图象向左平移个单位,再向上平移个单位,则其顶点为( )A.(0,0) B.
12、(1,2) C.(0,1) D.(2,1)19函数的图象与轴有交点,则的取值范围是( )AB C D20已知反比例函数的图象如右图所示,则二次函数的图象大致为( )DCBA21、若抛物线的开口向下,顶点是(1,3),随的增大而减小,则的取值范围是( )(A) (B) (C) (D)22已知抛物线,请回答以下问题:它的开口向 ,对称轴是直线 ,顶点坐标为 ;图象与轴的交点为 ,与轴的交点为 。23抛物线过第二、三、四象限,则 0, 0, 024抛物线可由抛物线向 平移 个单位得到25顶点为(2,5)且过点(1,14)的抛物线的解析式为 26对称轴是轴且过点A(1,3)、点B(2,6)的抛物线的解析式为 27.已知二次函数,则当 时,其最大值为028二次函数的值永远为负值的条件是 0, 029已知抛物线与轴的交点都在原点的右侧,则点M()在第 象限 30已知抛物线与轴交于点A,与轴的正半轴交于B、C两点,且BC=2,SABC=3,则= ,= 班级 姓名 31、已知二次函数 的图象经过点(1,0)和(-5,0)两点,顶点纵坐标为,求这个二次函数的解析式。