1、1热点突破2热点突破高考导航1.圆锥曲线是平面解析几何的核心部分,也是高考必考知识,主要以一个小题一个大题的形式呈现,难度中等偏上;2.高考中的选择题或填空题主要考查圆锥曲线的基本性质,高考中的解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高.3热点突破热点一定点定值问题热点一定点定值问题(教材教材VS高考高考)定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题.圆锥曲线
2、中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.4热点突破5热点突破教材探源本题第(1)问源于教材选修21P40例1,主要考查利用待定系数法及方程思想求曲线方程.本题第(2)问源于教材选修21P41例3,主要考查利用坐标法研究几何问题,充分考查学生解决综合问题的能力.6热点突破7热点突破8热点突破9热点突破得步骤分:抓住得分点的解题步骤,“步步为赢”,在第(1)问中,分析隐含信息,列出方程组,求出方程.在第(2)问中,分类讨论设出直线方程联立方程写出根与系数的关系利用公式化简求解.得关
3、键分:(1)列出方程组.(2)直线方程.(3)韦达定理.(4)斜率公式.都是不可少的过程,有则给分,无则没分.得计算分:解题过程中的计算准确是得满分的根本保证,如(得分点3),(得分点5),(得分点7).10热点突破解答圆锥曲线中的定点问题的一般步骤第一步:研究特殊情形,从问题的特殊情形出发,得到目标关系所要探求的定点.第二步:探究一般情况.探究一般情形下的目标结论.第三步:下结论,综合上面两种情况定结论.11热点突破12热点突破13热点突破14热点突破15热点突破探究提高1.求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过
4、程中消去变量,从而得到定值.2.定值问题求解的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.16热点突破17热点突破18热点突破(2)证明设直线MN的方程为yk(x2),N(x0,y0),DAAM,D(2,4k).19热点突破20热点突破热点二圆锥曲线中的范围热点二圆锥曲线中的范围(最值最值)问题问题 圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.21热点突破22热点突破23热点突破24热点突破探究提高求圆锥曲线中范围、最值的主要
5、方法:(1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形性质数形结合求解.(2)代数法:若题目中的条件和结论能体现一种明确的函数关系,或者不等关系,或者已知参数与新参数之间的等量关系等,则利用代数法求参数的范围.25热点突破26热点突破27热点突破28热点突破热点三圆锥曲线中的探索性问题热点三圆锥曲线中的探索性问题 圆锥曲线的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题.29热点突破30热点突破31热点突破32热点突破33热点突破探究提高1.此类问题一般分
6、为探究条件、探究结论两种.若探究条件,则可先假设条件成立,再验证结论是否成立,成立则存在,不成立则不存在;若探究结论,则应先求出结论的表达式,再针对其表达式进行讨论,往往涉及对参数的讨论.2.求解步骤:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在,否则,元素(点、直线、曲线或参数)不存在.34热点突破【训练3】(2018衡水联考)在平面直角坐标系xOy中,过点C(2,0)的直线与抛物线y24x相交于A,B两点,设A(x1,y1),B(x2,y2).(1)(一题多解)求证:y1y2为定值;(2)是否存在平行于y轴的定直线被以AC为直径的圆截得的弦长为定值?如果存在,求出该直线方程和弦长;如果不存在,说明理由.35热点突破36热点突破37热点突破38本节内容结束