1、 第 1 页 中考数学复习资料中考数学复习资料 第一章第一章 实数实数 考点一、实数的概念及分类考点一、实数的概念及分类 (3 分)分) 1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数 无理数 无限不循环小数 负无理数 2、无理数 在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如 3 2,7等; (2)有特定意义的数,如圆周率 ,或化简后含有 的数,如 3 +8 等; (3)有特定结构的数,如 0.1010010001等; (4)某些三角函数,如 sin60o等 考点二、实数的倒数、相反数和绝对值考点二、实数的倒数
2、、相反数和绝对值 (3 分)分) 1、相反数 实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零) ,从数轴上看,互为 相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数,则有 a+b=0,a=b,反之亦成立。 2、绝对值 一个数的绝对值就是表示这个数的点与原点的距离, |a|0。 零的绝对值时它本身, 也可看成它的相反数, 若|a|=a, 则 a0;若|a|=-a,则 a0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。 3、倒数 如果 a 与 b 互为倒数,则有 ab=1,反之亦成立。倒数等于本身的数是 1 和-1。零没有倒
3、数。 考点三、平方根、算数平方根和立方根考点三、平方根、算数平方根和立方根 (310 分)分) 1、平方根 如果一个数的平方等于 a,那么这个数就叫做 a 的平方根(或二次方跟) 。 一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。 正数 a 的平方根记做“a” 。 2、算术平方根 正数 a 的正的平方根叫做 a 的算术平方根,记作“a” 。 正数和零的算术平方根都只有一个,零的算术平方根是零。 a(a0) 0a aa2 ;注意a的双重非负性: -a(a0 y 0 x 图像经过一、二、三象限,y 随 x 的增大而增大。 b a b 2 时,y 随 x 的增大而减小,简记左增
4、 右减; (4)抛物线有最高点,当 x= a b 2 时,y 有最 大值, a bac y 4 4 2 最大值 2、二次函数)0,( 2 acbacbxaxy是常数,中,cb、a的含义: a表示开口方向:a0 时,抛物线开口向上 a0 时,图像与 x 轴有两个交点; 当=0 时,图像与 x 轴有一个交点; 当R+r 两圆外切d=R+r 两圆相交R-rBC) ,并且使 AC 是 AB 和 BC 的比例中项,叫做把线段 AB 黄金分 割,点 C 叫做线段 AB 的黄金分割点,其中 AC= 2 15 AB0.618AB 考点二、平行线分线段成比例定理考点二、平行线分线段成比例定理 (35 分)分)
5、三条平行线截两条直线,所得的对应线段成比例。 推论: (1)平行于三角形一边的直线截其他两边(或两边的延长线) ,所得的对应线段成比例。 逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角 形的第三边。 (2)平行于三角形一边且和其他两边相交的直线截得的三角形的三边与原三角形的三边对应成比例。 考点三、相似三角形考点三、相似三角形 (38 分)分) 1、相似三角形的概念 对应角相等,对应边成比例的三角形叫做相似三角形。相似用符号“”来表示,读作“相似于” 。相似三角 形对应边的比叫做相似比(或相似系数) 。 2、相似三角形的基本定理 n m b a
6、 d c b a 第 30 页 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。 用数学语言表述如下: DEBC,ADEABC 相似三角形的等价关系: (1)反身性:对于任一ABC,都有ABCABC; (2)对称性:若ABCABC,则ABCABC (3)传递性:若ABCABC,并且ABCABC,则ABCABC。 3、三角形相似的判定 (1)三角形相似的判定方法 定义法:对应角相等,对应边成比例的两个三角形相似 平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 判定定理 1:如果一个三角形的两个角与另一个三角形的两
7、个角对应相等,那么这两个三角形相似,可简述 为两角对应相等,两三角形相似。 判定定理 2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角 形相似,可简述为两边对应成比例且夹角相等,两三角形相似。 判定定理 3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简 述为三边对应成比例,两三角形相似 (2)直角三角形相似的判定方法 以上各种判定方法均适用 定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么 这两个直角三角形相似 垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相
8、似。 4、相似三角形的性质 (1)相似三角形的对应角相等,对应边成比例 (2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比 (3)相似三角形周长的比等于相似比 (4)相似三角形面积的比等于相似比的平方。 5、相似多边形 (1)如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形。相似多 边形对应边的比叫做相似比(或相似系数) (2)相似多边形的性质 相似多边形的对应角相等,对应边成比例 相似多边形周长的比、对应对角线的比都等于相似比 相似多边形中的对应三角形相似,相似比等于相似多边形的相似比 相似多边形面积的比等于相似比的平方 6、位似图形 如果两个图形不仅是相似图形, 而且每组对应点所在直线都经过同一个点, 那么这样的两个图形叫做位似图形, 这个点叫做位似中心,此时的相似比叫做位似比。 性质:每一组对应点和位似中心在同一直线上,它们到位似中心的距离之比都等于位似比。 由一个图形得到它的位似图形的变换叫做位似变换。利用位似变换可以把一个图形放大或缩小。 第 31 页