1、完全平方公式教学设计 大峪三中 张玉丰一、教学目标:1、经历探索完全平方公式的过程,进一步发展符号感和推理能力。2、会推导完全平方公式,并能运用公式进行简单的计算。3、了解(a+b)2=a2+2ab+b2的几何背景。教学重点;完全平方公式的准确应用。 教学难点;掌握公式中字母表达式的意义及灵活运用公式进行计算。二、教学过程:一、提出问题引入 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,你会计算下列各题吗?(x+3)2=_,(x-3)2=_,这些式子的左边和右边有什么规律?再做几个试一试:(2m+3n)2=_,(2m-3n)2=_,二、分析问题 1、学生回答 分组交流、讨论 多项式
2、的结构特点(2m+3n)2= (2m)2+22m3n+(3n)2 =4m2+12mn+9n2,(2m-3n)2= (2m)2-22m3n+(3n)2 =4m2-12mn+9n2,(1)原式的特点。两数和的平方。(2)结果的项数特点。等于它们平方的和,加上它们乘积的两倍(3)三项系数的特点(特别是符号的特点)。(4)三项与原多项式中两个单项式的关系。2、学生回答 总结完全平方公式的语言描述:两数和的平方,等于它们平方的和,加上它们乘积的两倍;两数差的平方,等于它们平方的和,减去它们乘积的两倍。3、学生回答 完全平方公式的数学表达式: (a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+
3、b2.4、完全平方公式的几何背景:用不同的形式表示图形的总面积并进行比较,你发现了什么?(a+b)2=a2+2ab+b2你能运用公式计算下列各式吗?(-x-3)2=_, (-x+3)2=_。(-2m-3n)2=_,(-2m+3n)2=_。上面各式的计算结果:(-x-3)2=(-x)2-2(-x)3+32 =x2+6xn+9_,(-x+3)2=(-x)2+2(-x)3+32 =x2-6x+9_。(-2m-3n)2=(2m)2-2(-2m)3n+(3n)2 =4m2+12mn+9n2,(-2m+3n)2=(2m)2+2(-2m)3n+(3n)2 =4m2-12mn+9n2。你从上面的计算结果中发现
4、了什么规律?根据这个规律,完全平方公式又如何叙述?三、运用公式,解决问题1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性) (m+n)2=_, (m-n)2=_, (-m+n)2=_, (-m-n)2=_, (a+3)2=_, (-c+5)2=_, (-7-a)2=_, (0.5-a)2=_.2、小试牛刀 (x+y)2 =_; (-y-x)2 =_; (2x+3)2 =_; (3a-2)2 =_; (2x+3y)2 =_; (4x-5y)2 =_; (0.5m+n)2 =_; (a-0.6b)2 =_.四、学生小结你认为完全平方公式在应用过程中,需要注意那些问题?(1) 公式右边共有3
5、项。(2) 两个平方项符号永远为正。(3)中间项的符号由等号左边的两项符号是否相同决定。(4)中间项是等号左边两项乘积的2倍。五课堂练习:(1)(-3a+2b)2=_(2)(-7-2m) 2 =_(3)(-0.5m+2n) 2=_(4)(3/5a-1/2b) 2=_(5)(mn+3) 2=_(6)(a2b-0.2) 2=_(7)(2xy2-3x2y) 2=_(8)(2n3-3m3) 2=_六、学生自我评价小结 通过本节课的学习,你有什么收获和感悟? 本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。七作业 课后反思本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式的等号两边的特点,让学生用语言表达公式的内容,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用。为完全平方公式第二节课的实际应用和提高应用做好充分的准备。