1、激光雷达测风技术大气风场数据获得的手段1.地球外表观测系统2.地面、海面、风散射仪等,只能提供外表大气层的数据3.高空单层大气观测系统4.机载和星载的云图变化的风场推算数据,该方式覆盖范围受限5.高空多层大气观测系统6.无线电探空仪和卫星探测器,无线电探空仪能够提供风场的垂直分布情况,但是它主要是在北半球的陆地,很难给出大覆盖范围的观测数据 激光雷达测风技术特点1.优势:与其它方式比较2.空间分辨率高角分辨率rad量级3.时间分辨率高4.高测量精度低对流层1m/s,中高层500时间采样hour312测量精度m/s1.51.52555水平积分区域km5050激光雷达测风技术开展趋势激光雷达测风技
2、术开展趋势工作波段趋向短波长探测方式 相 干 外 差 探 测 非 相 干 直 接 探 测 工作波长10 m2 m1.5 m1.06 m532nm355nm激光器状态CO2激光器激光器Tm:YLuAGTmHo:YAGRaman激光器激光器OPO-Nd:YAGEr激光器激光器Nd:YAG倍频倍频Nd:YAG可见光可见光三倍频三倍频Nd:YAG优点宽带探测宽带探测可调谐本振可调谐本振相干相干非相干非相干最佳的最佳的激光技术激光技术硅探测器硅探测器分子散射分子散射探测对象MieMieMieMieMieRayleighMieRayleigh激光多普勒测风雷达的分类激光多普勒测风雷达的分类1.直探式(相对
3、强度检测)边缘技术单边缘、双边缘条纹技术环形条纹、直列条纹分子吸收技术I2分子吸收2.相干式(直接频率检测FFT)外差技术本振光与信号光自差技术多频率发射光本身超外差技术 本振光与多频率信号光大气分子或气溶胶散射产生的多普勒频移大气分子或气溶胶散射产生的多普勒频移 根据动量守恒和能量守恒定理:大气分子或气溶胶散射产生的多普勒频移:对于前向散射 对于后向散射 原子吸收产生的多普勒频移原子吸收产生的多普勒频移原子共振吸收频率为:根据动量守恒和能量守恒定理:多普勒频移为:原子吸收截面由于多普勒频移而展宽:对于原子自发辐射有:根据动量守恒和能量守恒定理:多普勒频移:自发辐射光子与紊乱光子之间的多普勒频
4、移:在后向散射情况下,其多普勒频移:相干探测测风技术原理:原理:假设本振光频率fLO、激光脉冲发射频率f0=fLO+foffset、信号回波频率fsig=f0+f,则在光混频后得到和频和差频,即这时探测器只能响应低频部分,即中频信号:sigLOff散射信号在窄带滤波时变得很强精度:原则上没有偏差测量准确性:不决定于风速直接探测测风技术原理:不使用本振光进行解调,直接使用光频鉴频器或光谱分析仪,将多普勒频移转变成光强/光功率的变化,或转化成光强/光功率的空间分布;光频谱分辨仪器主要采用以下三种类型:(1)原子吸收线,例如Na、K和Fe,使用全部共振吸收谱线(2)边缘滤波器,利用分子吸收线边缘发射
5、(如I2吸收线),或光干涉仪(如F-P标准具)边缘发射(3)光干涉仪条纹图像(Fringe pattern imaging)(4)主要思路:光强变化率频移径向速度;光强变化量频移径向速度;光强空间分布频移径向速度;原子吸收线:频率分析器光强变化率与风速和温度变化曲线单边缘滤波器:频率分析器单边缘滤波器:频率分析器双边缘滤波器:频率分析器双边缘滤波器:频率分析器条纹图像:频率分析器高分辨率光干涉仪产生空间辐照度分布,亦即代表接收面信号光谱平均频率利用其中一个图样估计,即锁定峰值照度,计算照度分布的一阶统计量,类似于被动干涉仪,利用同心环直径确定频移矢量风速反演方法1.矢量风速V(u,v,w)是少
6、需要三个独立的径向速度估计2.理想情况下:矢量风速应该在空间某一点同时测量出它的三个方向的速度值,即至少需要三部激光雷达系统3.实际情况下:确定风场的水平方向,利用激光雷达的扫描技术确定风速的矢量。常用以下两种扫描技术:4.速度方位显示扫描技术(Velocity-azimuth-display,VAD),即激光雷达光束以固定倾角进展圆锥形扫描5.多普勒光束定向摆动扫描技术(Doppler-Beam-Swinging,DBS),即点激光雷达光束垂直指向并向东倾斜和向北倾斜多普勒激光雷达扫描技术:在底部,VAD扫描;在上部,DRS扫描VAD 扫描矢量风场反演 对于VAD扫描:仰角是常量,方位角是变
7、量,径向速度vR是测量量,(u,v,w)满足下式:径向速度vR可以由v、u和w组成,纬度风速分量usincos,子午线速度分量vcos cos,垂直速度分量wsin,-方位角,向北顺时针,仰角。上式还可表示为:a:补偿量,b:振幅,max 周相位移动DBS 扫描矢量风场反演扫描矢量风场反演 -天顶角天顶角VRZ,VRE,VRN 分别是径向速度垂直、东向倾斜和北向倾斜分量改进型改进型DBS扫描矢量风场反演扫描矢量风场反演激光雷达波束分别是垂直向、向北、向东、向南和向西VR 0,w 0,u 0,v 0相干激光测风雷达结构相干激光测风雷达结构Master oscillator(MO)是稳定单频连续激
8、光器。移频器(AO-M)使发射光束产生固定频偏。后向散射信号与MO混频产生差频信号,其中包含散射体多普勒效应的径向速度。相干激光测风雷达波长选择相干激光测风雷达波长选择 1.原那么上,相干激光测风雷达可以选择任意波长,只要其不在共振吸收峰上。2.气溶胶米氏散射散射与分子散射瑞利散射相比,在频谱分析上更有优势。3.分子散射截面与-4成比例,气溶胶散射与-2或+1成比例。4.优势选择适当的波长,可以同时利用分子散射和气溶胶散射。5.长波长可以减小分子散射,一般相干激光测风雷达的波长选择在111mMOPA 与与 SOPA 发射机比较发射机比较1.种子注入再生放大和功率放大激光器2.“SOPA is
9、injection-seeded slave oscillator and power amplifier 3.种子激光是低功率的单频连续激光器4.再生放大器是高功率调Q脉冲激光器5.主振荡和功率放大激光器6.MOPA is master oscillator and power amplifier.7.对于相干探测,发射机必须有非常窄的带宽如1MHz8.对于脉冲发射,必须有比较长的脉冲宽度,以便改善非常有限的频谱宽度。NOAA mini-MOPA CO2 Coherent Lidar NOAA HRDL(A SOPA Lidar)直接探测激光测风雷达构造 发射机:必须是单频激光器(稳频窄线宽
10、),如倍频532nm、三倍频355nm或四倍频266nm;接收机:如果测量精度为1m/s,则频率分辨率=2v/=5.6MHz(对于532nm)激光雷达的后向散射信号激光雷达的后向散射信号光子探测器频率发射激光接收信号多普勒频移信号谱分析仪时间接收信号发射激光卷云大气粒子风矢量激光器天线时间空间的对应关系时间空间的对应关系激光波长多普勒频率-,2vddvv时间 t距离r接收信号强度发射激光脉冲卷云 t r频率发射激光接收信号多普勒频移信号d测量周期脉冲宽度或采样宽度-2 ,2ttctrtcr后向散射信号的频谱后向散射信号的频谱Zero Doppler shift Signal Intensity
11、 Wavelengthmolecular signalLaerosol signaltransmitted signalDoppler shiftsunlight 分子散射谱宽度3.0GHz 气溶胶散射谱宽度发射激光谱宽度(约90MHz)双双F-P标准具多普勒检测标准具多普勒检测 IL0ILIT()Backscattered signalLaserIntensityI02T1()02Backscattered signalLaserT2()ILI01L01Intensity)(10LLLdTIII)(1)()(1020102021010LLLLLdTIIITIITIIIMie散射和分子散射速度
12、测量散射和分子散射速度测量 Rayleigh signalFrequencyEtalon 2Mie signalEtalon 1中心10 中心20 双通道F-P标准具 探测器探测器中心10 中心20 双通道F-P标准具 探测器探测器 FrequencyEtalon 2Etalon 1Rayleigh signalMie signalNASA/Goddard车载测风激光雷达车载测风激光雷达参 数指 标激光器:波长355nm脉冲能量70mJ重复频率50Hz望远镜:口径FOV45cm0.2mrad扫描方式XY双轴半空间测量范围1.835km距离分辨率0.25km3kmMAC地基测风激光雷达地基测风激
13、光雷达参 数指 标激光器:波长355nm,532nm脉冲能量400mJ重复频率10Hz望远镜:口径50cm扫描方式经纬仪平台测量范围距离分辨率0.520km0.25km法国法国OHP观测站观测站参 数指 标激光器:波长532nm脉冲能量330mJ重复频率30Hz望远镜:口径FOV450cm0.1mrad扫描方式固定(31)方位测量范围距离分辨率855km0.15kmESA/ADM Aeolus全球激光测风雷达全球激光测风雷达参 数指 标卫星轨道高度平均400 km轨道类型极间太阳同步俯角35有效天线口径1.1 m工作波长355 nm发射机功率13 W100 Hz高度范围(米+瑞利)-126.5
14、km(可扩展)垂直分辨率1 km (可调)水平积分长度3.5km (可调)信号处理距离50 km欧洲航天局的ALADIN方案l ALADIN(Atmospheric Laser Doppler Lidar IN strument)l 紫外波段激光多普勒测风雷达l 2007年发射l 全球三维风场轮廓测量,满足将来全球观测系统(GOS)的要求 l 进一步研究高级大气模型,对大气进行更深入的分析和研究 l 2005年12月21日进行首次飞行实验,机载系统的正确性,同时还 要采集数据以检验算法。l 这次的飞行活动,还将为下一次,2007年初更加深入更加全面的飞行实验打下基础。ALADIN工作示意图AL
15、ADIN装调局部照片相干激光多普勒测风雷达相干激光多普勒测风雷达1 1 相干激光多普勒测风雷达经历了三个开展阶段:10.6m(CO2)相干激光多普勒测风雷达1.06 m(YAG)相干激光多普勒测风雷达2m(Tm:YAG,Tm,Ho:YLF相干激光多普勒测风雷达技术参数技术指标波长(m)10.6脉冲能量(mJ)10脉冲宽度(ns)2000脉冲重复频率(Hz)100扫描器/望远镜(mm)150距离分辨率0.05径向速度精度(m/s)1最远作用距离(km)4洛洛-马公司机载马公司机载CO2相干激光多普勒雷达相干激光多普勒雷达CLAWS-YAG相干激光多普勒测风雷达相干激光多普勒测风雷达技术参数技术指
16、标波长(m)1.06YAG脉冲能量(mJ)1000脉冲宽度(ns)8脉冲重复频率(Hz)10扫描器/望远镜(mm)200径向速度精度(m/s)1最远作用距离(km)271993年CLAWS(Coherent Atmospheric Wind Sounder)已装备肯尼迪航天中心CLAWS-YAG原理光路图原理光路图2m相干激光多普勒测风雷达11.2m相干激光多普勒测风雷达的优势LD泵浦2m激光器,小型化相干激光雷达理想光源之一2m,大气窗口,大气透过率,优于传统的1.06mYAG激光器 和10.6 mCO2激光器与蓝绿或紫外直探式激光测风雷达相比,2m红外波段,人眼安全(1.4以上),军事保密
17、性强脉冲外差体制,较容易能实现高灵敏度、高精度大气风场探测2 m激光器的研究现状激光器的研究现状单掺杂2m激光器室温,低能量Tm:YAG 钇铝石榴石 Tm:LuAG 镥铝石榴石 双掺杂2m激光器低温,高能量Tm,Ho:YAG钇铝石榴石 Tm,Ho:YLF氟化钇锂激光器Tm,Ho:GdVO4钒酸钆)Tm,Ho:LuAG 镥铝石榴石Tm,Ho:LuLF 氟化镥锂Tm,Ho:KLF;Tm,Ho:GLFTm激光器泵浦Ho激光器室温下室温下LuLF和和YLF性能比较性能比较反射率LuLFYLF阈值(J)斜率阈值(J)斜率0.980.940.900.820.41240.45470.17310.14850.
18、17760.19310.17310.14850.47270.51620.56530.66370.14510.15180.14760.1114材料阈值(J)斜率一般模式调QLuLF0.610.1220.041YLF0.690.1190.039几种几种Tm,Ho双掺杂激光物质比较双掺杂激光物质比较YLF5%Tm,0.5%HoLuAG5%Tm,0.5%HoGdVO43%Tm,0.3%HoLuLF5%Tm,0.5%Ho阈值斜率效率输出能量116mJ7.3%15.7mJ151mJ10.8%20.0mJ151mJ12.1%24.1mJ132mJ12.6%26.8mJNASA LaRC Jirong YU博
19、士的工作博士的工作NASA LaRC Jirong YU博士的工作博士的工作1995年10阵列LD-3.6J22路冷却2002年6阵列LD-3.6J8路冷却2003年6阵列LD-3.6J4路冷却2004年6阵列LD-3.6J2m种子激光器技术微腔耦合腔标准具单向环形腔2m激光泵浦技术纵向(端面)泵浦技术泵浦光与激光振荡模式匹配能量利用率高,光束质量好耦合效率高,连续泵浦,高重频横向(侧面)泵浦技术耦合光学系统简单泵浦光注入能量大,高能量输出模式匹配不佳,耦合效率低;脉冲泵浦,重频低2m激光调Q脉冲技术M4M1M3M2Q-SwitchEtalonTm,Ho:YLF四镜环形腔结构2 m相干激光多普
20、勒测风雷达相干激光多普勒测风雷达1990年美国相干技术公司(CTI)研制出世界上第一台2m相干激光多普勒测风雷达2001年“NOSATODWL(Twin Otter Doppler Wind Lidar)2001NOSA海军机载GWOLF(Ground based wind Observing Lidar Facility)2001年NASA的 VALIDAR(Validation LIDAR)Win Trace美国CTI相干公司开发的商用机型JEM-CDL(Japanese Experiment Module-Coherent Doppler Lidar)(NASA与日本航天局国际空间站TO
21、DWL相干激光多普勒测风雷达相干激光多普勒测风雷达技术参数技术指标波长(m)2.05脉冲能量(mJ)23脉冲宽度(ns)500脉冲重复频率(Hz)200扫描器/望远镜(mm)100距离分辨率(m)50100径向速度精度(m/s)1最远作用距离(km)1015GWOLF相干激光多普勒测风雷达相干激光多普勒测风雷达技术参数技术指标波长(m)2.05(人眼安全)脉冲能量(mJ)2-3脉冲重复频率(Hz)500扫描器/望远镜(mm)(120;30)/10cm距离分辨率(m)0.5径向速度精度(m/s)0.05风速分量精度(m/s)0.1,30度VAD和LADSA最远作用距离(km)10VILIDAR相
22、干激光多普勒测风雷达相干激光多普勒测风雷达技术参数技术指标波长(m)2.05(人眼安全)脉冲能量(mJ)50-150脉冲重复频率(Hz)510扫描器/望远镜(mm)100距离分辨率(m)0.5径向速度精度(m/s)0.05风速分量精度(m/s)0.1,采用30度VAD和LADSA最远作用距离(km)25WinTrace相干激光多普勒测风雷达相干激光多普勒测风雷达(1)WinTrace相干激光多普勒测风雷达相干激光多普勒测风雷达(2)WinTrace原理光路图原理光路图技术参数技术指标脉冲重复频率500Hz 10Hz脉冲能量2mJ脉冲宽度500ns系统效率10%波长2022.5nm(Tm:YAG
23、)孔径10cm距离分辨率100m最大不模糊径向速度20ms-140ms-1(扩展)探测距离400m 10km扫描系统参数技术指标孔径11.6cm方位范围360度俯仰范围0-180度最大扫描速度20度/分钟定位精度0.1度位置分辨率0.01度位置重复率0.05度WinTrace相干激光多普勒测风雷达相干激光多普勒测风雷达(3)雷达系统参数扫描系统参数JEM-CDL相干激光多普勒测风雷达相干激光多普勒测风雷达技术参数技术指标波长(m)2.051YLF脉冲能量(mJ)2000脉冲宽度(ns)800脉冲重复频率(Hz)10扫描器/望远镜(mm)200径向速度精度(m/s)12,34种子注入再生放大和功
24、率放大激光器CLAWS-YAG原理光路图扫描器/望远镜(mm)Tm,Ho:YLF全球三维风场轮廓测量,满足将来全球观测系统(GOS)的要求扫描器/望远镜(mm)Tm激光器泵浦Ho激光器NASA/Goddard车载测风激光雷达根据动量守恒和能量守恒定理:泵浦光注入能量大,高能量输出光频谱分辨仪器主要采用以下三种类型:2m(Tm:YAG,Tm,Ho:YLF相干激光多普勒测风雷达双掺杂2m激光器低温,高能量2m激光调Q脉冲技术Tm,Ho:YAG钇铝石榴石(2)边缘滤波器,利用分子吸收线边缘发射(如I2吸收线),或光干涉仪(如F-P标准具)边缘发射6MHz(对于532nm)微脉冲相干多普勒激光雷达原理
25、微脉冲相干多普勒激光雷达原理微脉冲相干多普勒激光雷达原理Pulsed laser15W,13nsec,100kHzLocal oscillatorCW,8WAOM200MHz shiftHgCdTe500MHz detectorAerosol particles T t T NT N 个脉冲积累;相干积累时间为 T.分辨率为:t/T 本振光线宽本振光线宽风向的判别风向的判别 ELOei0tEsei2 ELO2Es22ELOEscos0tsin2sin)sin(cos2cos2cos)cos(cos2000000sLOsLOsLOsLOsLOsLOEEtEEttEEEEtEEttEE200 MH
26、zreference00090BPIQRF signal1.51.00.50.0-0.5-1.0403020100ns外差信号:外差信号正交解调:低通滤波:ELOEscos,IELOEssin,Q距离多普勒模糊 V 2T0.7msRcT21.2kmVRc4 利用调焦和编码减小速度模糊问题与距离相关的回波功率与距离相关的回波功率8910623456789107power(arb.)400m300200100range(m)returned power fit I2Q2 11zzfz0 2z032m(fit)26m(diffraction limited)1 detected photon per pulse per range gate Overall system M21.3