《高数双语》课件section 10.1.pptx

上传人(卖家):momomo 文档编号:5897849 上传时间:2023-05-14 格式:PPTX 页数:13 大小:595.38KB
下载 相关 举报
《高数双语》课件section 10.1.pptx_第1页
第1页 / 共13页
《高数双语》课件section 10.1.pptx_第2页
第2页 / 共13页
《高数双语》课件section 10.1.pptx_第3页
第3页 / 共13页
《高数双语》课件section 10.1.pptx_第4页
第4页 / 共13页
《高数双语》课件section 10.1.pptx_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、Section 10.11Riemann,Bernhard2Mass of a Thin Rectangular Sheet MetalSuppose a thin rectangular sheet metal lieson the xOy-plane and its density is a functionthen,how(,),(,),x yf x y of the point can we find the mass of this sheet metal?To find the mass,we suppose that(,)f x yis defined on a rectangu

2、lar region given by:,.axbcydWe divide into small pieces of areaand number them in some A order 12,.nAAAkA 3Mass of a Thin Rectangular Sheet Metalin each piece(,)kkxyWe choose a point kA and form the sum1(,).nnkkkkSf xyA If f is continuous throughout,then,aswe refine the mesh(or two-dimensional piece

3、 go to zero,partition)width to make the“norm”of eachsum should have a limit and the limit shouldbe the mass of the thin rectangular steelmetal.(,)kkxykA we can expect that the01lim(,).nkkkdkSf xyA 4Volume of a Cylindrical bodycylindrical body in threedimensional space.How can we find thevolume of th

4、is body?then it can be think of aSuppose that(,)0,(,)(),zf x yx y 5Volume of a Cylindrical bodycylindrical body in threedimensional space.How can we findthe volume of this body?then it can be think of aSuppose that(,)0,(,)(),zf x yx y 6Volume of a Cylindrical bodycylindrical body in threedimensional

5、 space.How can we find thevolume of this body?then it can be think of aSuppose that(,)0,(,)(),zf x yx y 7Volume of a Cylindrical bodycylindrical body in threedimensional space.How can we find thevolume of this body?then it can be think of aSuppose that(,)0,(,)(),zf x yx y 8Volume of a Cylindrical bo

6、dycylindrical body in threedimensional space.How can we find the volume of this body?then it can be think of aSuppose that(,)0,(,)(),zf x yx y 9Volume of a Cylindrical bodycylindrical body in threedimensional space.How can we find the volume of this body?then it can be think of aSuppose that(,)0,(,)

7、(),zf x yx y 10The Concept of the Double IntegralDefinition Double IntegralSuppose that a scalar function f is defined on a closed bounded is k pieces of area ,1,2,kkn and the measurement of and form the sum.k denoted by kkP Choose any point1().nkkkf P 01lim()nkkdkf P exist,where If the limit 1max()

8、,nkkdd we say that f is integrable().over the domainplane regionSuppose,however,can be divided into pieces of().()PartitionSummationPrecisionRiemann,Bernhard(1826-1866),German mathematician Page 222/definition 11.1.111The Notation of the Double Integralthen the limit of Riemann().If function f is in

9、tegral over the domain sum is called the integral of the multivariable function f on the domain(),01()(,)lim()nkkdkf x y df P Domain of integrationIntegrandIntegrand representationIntegral element Element of area12Properties of Double Integralthen(),Suppose(,)f x yand(,)g x yare both integrable over

10、 the domain 2.Additivity with respect to the domain of integration11()()()(,)(,)(,).f x y df x y df x y d,where k is a constant.()()(,)(,)kf x y dkf x y d(1)1.Linearity Property2()1()and12(),()Suppose that12()()()have no common part except for their Thenboundaries.(2)()()()(,)(,)(,)(,)f x yg x ydf x

11、 y dg x y d13Properties of Double Integral4.Mean Value Theoremon().then()()(,)(,)f x y dg x y d,if(,)(,)f x yg x y on().(1)()(,)0f x y d ,if(,)0f x y (2)(,),(,)(),lf x yLx y(4)If()(,).lf x y dL 3.Domination,such thatis a closed bounded,and connected()Suppose that ,()anddomain.()fC Then there exists at least one point ()(,),.f x y df ()()(,)(,)f x y df x y d(3)

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 大学
版权提示 | 免责声明

1,本文(《高数双语》课件section 10.1.pptx)为本站会员(momomo)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|