1、5.2 求解二元一次方程组第五章 二元一次方程组导入新课讲授新课当堂练习课堂小结第1课时 代入法 义务教育教科书义务教育教科书(BS)(BS)八上八上数学课件课件学习目标1.会用代入法解二元一次方程组.(重点、难点)导入新课导入新课观察与思考怎么求x、y的值呢?昨天,我们8个人去红山公园玩,买门票花了34元.每张成人票5元,每张儿童票3元.他们到底去了几个成人、几个儿童呢?还记得下面这一问题吗?设他们中有x个成人,y个儿童.5x+3(8-x)=34x+y=8,5x+3y=34讲授新课讲授新课用代入法解二元一次方程组一解:设去了x个成人,则去了(8x)个儿童,根据题意,得:解得:x=5.将x=5
2、代入8x=85=3.答:去了5个成人,3个儿童.用一元一次方程求解解:设去了x个成人,去了y个儿童,根据题意,得:用二元一次方程组求解观察:二元一次方程组和一元一次方程有何联系?这对你解二元一次方程组有何启示?y=8-x用二元一次方程组求解用二元一次方程组求解由得:y=8x.将代入得:5x+3(8x)=34.解得:x=5.把x=5代入得:y=3.所以原方程组的解为:.3,5yxx+y=85x+3y=34x+y=85x+3y=345x+3(8-x)=34第一个方程x+y=8说明y=8-x将第二个方程5x+3y=34的y换成8-x解得x=5代入y=8-x得y=3y=3x=5思考:从到达到了什么目的
3、?怎样达到的?x+y=85x+3y=345x+3(8-x)=34二元一次方程组一元一次方程消消 元元转化 消除其中一个未知数,将二元一次方程组转化成解一元一次方程的想法,叫做消元思想.归纳总结 从一个方程中求出某一个未知数的表达式,再把它“代入”另一个方程,进行求解.这种方法称为代入消元法,简称代入法.典例精析将y=1代入,得 x=4.经检验,x=4,y=1适合原方程组.所以原方程组的解是x=5,y=2.解:将代入,得 3(y+3)+2y=14 3y+9+2y=14 5y=5 y=1.例1:解方程组 3x+2y=14 x=y+3 检验可以口算或在草稿纸上验算,以后可以不必写出.将y=2代入,得
4、 x=5.所以原方程组的解是x=5,y=2.解:由,得 x=13-4y 将代入,得 2(13-4y)+3y=16 26 8y+3y=16 -5y=-10 y=2 例2:解方程组 2x+3y=16 x+4y=13 归纳总结解二元一次方程组的步骤:第一步:在已知方程组的两个方程中选择一个适当的方程,将它的某个未知数用含有另一个未知数的代数式表示出来.第二步:把此代数式代入没有变形的另一个方程中,可得一个一元一次方程.第三步:解这个一元一次方程,得到一个未知数的值.第四步:回代求出另一个未知数的值.第五步:把方程组的解表示出来.第六步:检验(口算或在草稿纸上进行笔算),即把求得的解代入每一个方程看是
5、否成立.由由直接代入直接代入 下列各方程组中,应怎样代入消元?由得由得y=7x 11 将代入将代入 x=4y-1 3x+y=10 7x-y=11 5x+2y=0 小技巧:用代入法时,往往对方程组中系数为1的未知数所在的方程进行变形代入.练一练例3:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部20场比赛中得到35分,那么这个队胜负场数分别是多少?解 设胜的场数是x,负的场数是y,可列方程组:由得 y=20-x.将代入,得 2x+20-x=35.解得 x=15.将 x=15代入得y=5.则这个方程组的解是352,20yxyx5,15yx42xy
6、xy1.二元一次方程组的解是()37xy A11xyB73xyC31xy D.D当堂练习当堂练习51xyxy2.方程组的解是()32xyB14xy C41xy D23xyA.By=2xx+y=12(1)(2)2x=y-54x+3y=65解:(1)x=4y=8(2)3.解下列方程组.x=5y=15解二元一次方程组基本思路“消元”课堂小结课堂小结代入法解二元一次方程组的一般步骤变:用含一个未知数的式子表示另一个未知数代:用这个式子替代另一个方程中相应未知数求:求出两个未知数的值写:写出方程组的解课后作业课后作业见本课时练习5.2 求解二元一次方程组第五章 二元一次方程组导入新课讲授新课当堂练习课堂
7、小结第2课时 加减法 义务教育教科书义务教育教科书(BS)(BS)八上八上数学课件课件学习目标1.会用加减法解二元一次方程组(重点)导入新课导入新课观察与思考信息一:已知买3瓶苹果汁和2瓶橙汁共需23元;信息二:又知买5瓶苹果汁和2瓶橙汁共需33元.解:设苹果汁的单价为x元,橙汁的单价为y元,根据题意得,你会解这个方程组吗?3x+2y=235x+2y=33你是怎样解这个方程组的?解:由得 将代入得 解得:y=4把y=4代人,得x=5所以原方程组的解为:除代入消元,除代入消元,还有其他方法吗?还有其他方法吗?3x+2y=235x+2y=333223yx33232235yyx=5y=43 x +5
8、 y=21 2 x 5 y=-11 小小明明把变形得:把变形得:2115 yx代入,不就消去代入,不就消去x了!了!讲授新课讲授新课用加减法解二元一次方程组一问题:怎样解下面的二元一次方程组呢?合作探究3 x +5 y=21 2 x 5 y=-11 问题:怎样解下面的二元一次方程组呢?小亮小亮把变形得1125xy可以直接代入呀!3 x +5 y=21 2 x 5 y=-11 问题:怎样解下面的二元一次方程组呢?5y和5y互为相反数互为相反数小丽小丽按照小丽的思路,你能消去一个未知数吗?11521253yxyx分析:分析:+左边左边 +左边左边 =右边右边+右边右边3x+5y+2x 5y10 5
9、x=10(3x+5y)+(2x-5y)=21+(11)小丽小丽5y和5y互为相反数互为相反数解方程组解:由由+得得:将x=2代入得:6+5y=21y=3所以原方程组的解是 x=2 y=311521253yxyx5x=10 x=2.你学会了吗?试一试3x +10 y=2.815x-10 y=8 解:把+得:18x10.8 x0.6把x0.6代入,得:30.6+10y2.8解得:y0.1解方程组所以这个方程组的解是 x=0.6 y=0.1方法总结同一未知数的系数 时,把两个方程的两边分别 !互为相反数相加 例1 解下列二元一次方程组解:由-得:88.y 解得:1.y 把代入,得:1y 257.x注
10、意:要检验哦!解得:1.x 所以方程组的解为1,1.xy 方程、中未知数x的系数相等,可以利用两个方程相减消去未知数x.132752yxyx典例精析试一试3x+2y=235x+2y=33解方程组解:由由得得:将x=5代入得:15+2y=23y=4.所以原方程组的解是 x=5 y=42x=10 x=5.与前面的代入法相比,是不是更加简单了!方法总结同一未知数的系数 时,把两个方程的两边分别 !相等相减 归纳总结 像上面这种解二元一次方程组的方法,叫做加减消元法,简称加减法.当方程组中两个方程的某个未知数的系数互为相反数或相等时,可以把方程的两边分别相加(系数互为相反数)或相减(系数相等)来消去这
11、个未知数,得到一个一元一次方程,进而求得二元一次方程组的解.典例精析例2:用加减法解方程组:23123417xyxy 对于当方程组中两方程不具备上述特点时,必须用等式性质来改变方程组中方程的形式,即得到与原方程组同解的且某未知数系数的绝对值相等的新的方程组,从而为加减消元法解方程组创造条件分析:3得:所以原方程组的解是23yx解:-得:y=2 把y2代入,解得:x3 2得:6x+9y=36 6x+8y=34 23123417xyxy解:4得:所以原方程组的解为解方程组:得:7x=35,解得:x=5.把x=5代入得,y=1.4x-4y=16试一试方法总结同一未知数的系数 时,利用等式的性质,使得
12、未知数的系数 .不相等也不互为相反数相等或互为相反数 找系数的最小公倍数归纳总结主要步骤:特点:基本思路:写解求解加减二元一元加减消元:消去一个元分别求出两个未知数的值写出原方程组的解同一个未知数的系数相同或互为相反数用加减法解二元一次方程组:例3:已知 ,则a+b等于_.82342baba3 分析:方法一,直接解方程组,求出a与b的值,然后就可以求出a+b.方法二:+得 4a+4b=12,a+b=3.【方法总结】解题的关键是观察两个方程相同未知数的系数关系,利用加减消元法求解 6)(3)(230)(3)(2yxyxyxyx例4:解方程组 解:由+,得 4(x+y)=36 49yxyx5.25
13、.6yx所以 x+y=9 由-,得 6(x-y)=24 所以 x-y=4 解由、组成的方程组可求得法二:整理得65305yxyx【方法总结】通过整体代入法(换元法)是数学中的重要方法之一,往往能使运算更简便当堂练习当堂练习1.方程组 的解是 237,38xyxy51 xy2.用加减法解方程组6x+7y=196x-5y=17应用()A.-消去y B.-消去xC.-消去常数项D.以上都不对B 3.解下列方程组542)1(yxyx123)2(yxyx13243)3(yxyx解:拓展延伸拓展延伸1.若 ,则x+2y=_ 2.已知2ayb3x+1与-3ax-2b2-2y是同类项,则x=_ _ 02yxyx-31-1的解,求m与n的值.3.已知 是方程组6n-3y-mxyx12xy.41nm,解:解二元一次方程组基本思路“消元”课堂小结课堂小结加减法解二元一次方程组的一般步骤课后作业课后作业见本课时练习