《圆的有关性质》课件(第3课时)-(高效课堂)获奖-人教数学2022.ppt

上传人(卖家):ziliao2023 文档编号:6278522 上传时间:2023-06-21 格式:PPT 页数:39 大小:1.14MB
下载 相关 举报
《圆的有关性质》课件(第3课时)-(高效课堂)获奖-人教数学2022.ppt_第1页
第1页 / 共39页
《圆的有关性质》课件(第3课时)-(高效课堂)获奖-人教数学2022.ppt_第2页
第2页 / 共39页
《圆的有关性质》课件(第3课时)-(高效课堂)获奖-人教数学2022.ppt_第3页
第3页 / 共39页
《圆的有关性质》课件(第3课时)-(高效课堂)获奖-人教数学2022.ppt_第4页
第4页 / 共39页
《圆的有关性质》课件(第3课时)-(高效课堂)获奖-人教数学2022.ppt_第5页
第5页 / 共39页
点击查看更多>>
资源描述

1、圆的有关性质第圆的有关性质第3课时课时九年级上册九年级上册 本节课是在学习了垂径定理后本节课是在学习了垂径定理后,进而学习圆的又一个进而学习圆的又一个重要性质重要性质,主要研究弧,弦,圆心角的关系主要研究弧,弦,圆心角的关系课件说课件说明明 学习目标:学习目标:1了解圆心角的概念;了解圆心角的概念;2掌握在同圆或等圆中,两个圆心角、两条弧、两掌握在同圆或等圆中,两个圆心角、两条弧、两 条弦中有一组量相等,就可以推出它们所对应的条弦中有一组量相等,就可以推出它们所对应的 其余各组量也相等其余各组量也相等 学习重点:学习重点:同圆或等圆中弧、弦、圆心角之间的关系同圆或等圆中弧、弦、圆心角之间的关系

2、课件说课件说明明1思考思考圆是中心对称图形吗?它的对称中心在哪里?圆是中心对称图形吗?它的对称中心在哪里?圆是中心对称图形,圆是中心对称图形,它的对称中心是圆心,它的对称中心是圆心,它具有旋转不变性它具有旋转不变性.N把圆把圆 O 的半径的半径 ON 绕圆心绕圆心 O 旋转任意一个角度旋转任意一个角度15O2性质性质把圆把圆 O 的半径的半径 ON 绕圆心绕圆心 O 旋转任意一个角度旋转任意一个角度NO15N302性质性质把圆把圆 O 的半径的半径 ON 绕圆心绕圆心 O 旋转任意一个角度旋转任意一个角度NO30N602性质性质把圆把圆 O 的半径的半径 ON 绕圆心绕圆心 O 旋转任意一个角

3、度旋转任意一个角度NO60Nn2性质性质把圆把圆 O 的半径的半径 ON 绕圆心绕圆心 O 旋转任意一个角度旋转任意一个角度NOnN由此可以看出,由此可以看出,点点 N仍落在圆上仍落在圆上2性质性质把圆把圆 O 的半径的半径 ON 绕圆心绕圆心 O 旋转任意一个角度旋转任意一个角度2性质性质NOnN性质:性质:把圆绕圆心旋转任意一个角度后,仍与原来把圆绕圆心旋转任意一个角度后,仍与原来的圆重合的圆重合把圆把圆 O 的半径的半径 ON 绕圆心绕圆心 O 旋转任意一个角度旋转任意一个角度2性质性质NOnN我们把顶点在圆心的角叫做我们把顶点在圆心的角叫做圆心角圆心角如如NON是是圆圆 O 的一个圆心

4、角的一个圆心角把圆心角等分成把圆心角等分成 360 份,那么每一份的圆心角是份,那么每一份的圆心角是 1,同时整个圆也被分成了同时整个圆也被分成了 360 份份那么每一份这样的弧叫做那么每一份这样的弧叫做 1的弧的弧1的圆心角对着的圆心角对着 1的弧,的弧,1的弧对着的弧对着 1的圆心角的圆心角.n的圆心角对着的圆心角对着 n的弧,的弧,n的弧对着的弧对着 n的圆心角的圆心角.性质:性质:弧的度数和它所对圆弧的度数和它所对圆心角的度数相等心角的度数相等.2性质性质这样,这样,1的弧的弧1n的弧的弧n3探究探究如图,将圆心角如图,将圆心角AOB 绕圆心绕圆心 O 旋转到旋转到A OB 的位置,你

5、能发现哪些等量关系?为什么?的位置,你能发现哪些等量关系?为什么?AOB=A OBABOBAAB=A B AB=A B同样,还可以得到:同样,还可以得到:在同圆或等圆中,如果两条弧相在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角等,那么它们所对的圆心角_,所对的弦所对的弦_;在同圆或等圆中,如果两条弦相在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角等,那么它们所对的圆心角_,所对的弧所对的弧_这样,我们就得到下面的定理:这样,我们就得到下面的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等对的弦也相等 相等相等相等相等相等相

6、等相等相等4定理定理同圆或等圆同圆或等圆中,两个圆心角、中,两个圆心角、两条弧、两条弦两条弧、两条弦中有一组量相等,中有一组量相等,它们所对应的其它们所对应的其余各组量也相等余各组量也相等因为因为 AB=CD,所以,所以AOB=COD又因为又因为 AO=CO,BO=DO,所以所以AOB COD又因为又因为 OE 、OF 是是 AB 与与 CD 对应边上的高,对应边上的高,所以所以 OE=OF5稳固AOB=CODAB=CD如图,如图,AB、CD 是是 O 的两条弦:的两条弦:(1)如果)如果 AB=CD,那么,那么_,_;(2)如果)如果 =,那么,那么_,_;(3)如果)如果AOB=COD,那

7、么,那么_,_;(4)如果)如果 AB=CD,OEAB 于于 E,OFCD 于于 F,OE 与与 OF 相等吗?为什么?相等吗?为什么?ABCDAB=CDAB=CDAOB=CODAB=CD相等相等ABCDEFOAB=AC,ABC 等腰三角形等腰三角形又又ACB=60,ABC 是等边三角形,是等边三角形,AB=BC=CAAOB=BOC=AOC6例题例题例例1如图,在如图,在 O 中,中,=,ACB=60求证:求证:AOB=BOC=AOCABAC证明:证明:ABAC =ABCO例例2 如图,如图,AB 是是 O 的直径,的直径,=,COD=35,求,求AOE 的度数的度数AOBCDE解:解:CDB

8、CDEBOC=COD=DOE=35AOE=180-335=75CDBCDE=6例题例题例例3:如图,在:如图,在 O 中,弦中,弦 AB 所对的劣弧为圆的所对的劣弧为圆的,圆的半径为,圆的半径为 4 cm,求,求 AB 的长的长31ABO6例题例题1本节课学习了哪些内容?本节课学习了哪些内容?2圆心角、弧、弦之间有哪些关系?圆心角、弧、弦之间有哪些关系?7课堂小结课堂小结教科书习题教科书习题 第第 3,4 题题8布置作业布置作业 轴对称轴对称引言引言对称现象无处不在,从自然景观到艺术作对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可品,从建筑物到交通标志,甚至

9、日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!以找到对称的例子,对称给我们带来美的感受!引出新知引出新知探索新知探索新知问题问题1 1如图,把一张纸对折,剪出一个图案折如图,把一张纸对折,剪出一个图案折痕处不要完全剪断,再翻开这张对折的纸,就得到了痕处不要完全剪断,再翻开这张对折的纸,就得到了美丽的窗花观察得到的窗花,你能发现它们有什么共美丽的窗花观察得到的窗花,你能发现它们有什么共同的特点吗?同的特点吗?追问追问你能举出一些轴对称图形的例子吗?你能举出一些轴对称图形的例子吗?探索新知探索新知如果一个平面图形沿一条直线折叠,直线两旁的部如果一个平面图形沿一条直线折叠,直线两旁的部

10、分能够互相重合,这个图形就叫做轴对称图形,这条直分能够互相重合,这个图形就叫做轴对称图形,这条直 线就是它的对称轴这时,我们也说这个图形关于这条线就是它的对称轴这时,我们也说这个图形关于这条 直线成轴对称直线成轴对称共同特征:共同特征:每一对图形沿着虚线折叠,左边的图形都能与右边每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合的图形重合 探索新知探索新知问题问题2 2观察下面每对图形如图,你能类比前观察下面每对图形如图,你能类比前面的内容概括出它们的共同特征吗?面的内容概括出它们的共同特征吗?追问追问1你能再举出一些两个图形成轴对称的例子吗?你能再举出一些两个图形成轴对称的例子吗?探索新

11、知探索新知把一个图形沿着某一条直线折叠,如果它能够与另把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成一个图形重合,那么就说这两个图形关于这条直线成轴对称,这条直线叫做对称轴,折叠后重合的点是对轴对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点应点,叫做对称点 两者的区别:两者的区别:轴对称图形指的是一个图形沿对称轴折叠后这个图轴对称图形指的是一个图形沿对称轴折叠后这个图形的两局部能完全重合,而两个图形成轴对称指的是两形的两局部能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能个图形之间的位置关系,这两个

12、图形沿对称轴折叠后能够重合够重合探索新知探索新知追问追问2你能结合具体的图形说明轴对称图形和两个你能结合具体的图形说明轴对称图形和两个 图形成轴对称有什么区别与联系吗图形成轴对称有什么区别与联系吗?两者的联系:两者的联系:把成轴对称的两个图形看成一个整体,它就是一个把成轴对称的两个图形看成一个整体,它就是一个轴对称图形把一个轴对称图形沿对称轴分成两个图轴对称图形把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称形,这两个图形关于这条轴对称 探索新知探索新知追问追问2你能结合具体的图形说明轴对称图形和两个你能结合具体的图形说明轴对称图形和两个 图形成轴对称有什么区别与联系吗图形成轴对

13、称有什么区别与联系吗?追问追问1你能说明其中你能说明其中的道理吗?的道理吗?探索新知探索新知问题问题3如图,如图,ABC 和和ABC关于直线关于直线MN 对称,点对称,点A,B,C分别是点分别是点A,B,C 的对称点,线的对称点,线 段段AA,BB,CC与直线与直线MN 有什么关系?有什么关系?ABCMNPABC探索新知探索新知追问追问2 2上面的问题说明上面的问题说明“如果如果ABC ABC 和和ABCABC关于直线关于直线MN MN 对称,那么,直线对称,那么,直线MN MN 垂直垂直线段线段AAAA,BBBB和和CCCC,并且直线,并且直线MN MN 还平分线段还平分线段AAAA,BBB

14、B和和CCCC如如果将其中的果将其中的“三角形改为三角形改为“四边形四边形“五边形五边形其其他条件不变,上述结论还成他条件不变,上述结论还成立吗?立吗?ABCMNPABC经过线段中点并且垂直经过线段中点并且垂直于这条线段的直线,叫做这于这条线段的直线,叫做这条线段的垂直平分线条线段的垂直平分线 探索新知探索新知问题问题3如图,如图,ABC 和和ABC关于直线关于直线MN 对称,点对称,点A,B,C分别是点分别是点A,B,C 的对称点,线的对称点,线段段AA,BB,CC与直线与直线MN 有什么关系?有什么关系?ABCMNPABC探索新知探索新知追问追问3你能用数学语言概括前面的结论吗?你能用数学

15、语言概括前面的结论吗?成轴对称的两个图形的性质:成轴对称的两个图形的性质:如果两个图形关于某条如果两个图形关于某条直线对称,那么对称轴是任直线对称,那么对称轴是任何一对对应点所连线段的垂何一对对应点所连线段的垂直平分线即对称点所连线直平分线即对称点所连线段被对称轴垂直平分;对称段被对称轴垂直平分;对称轴垂直平分对称点所连线段轴垂直平分对称点所连线段 ABCMNPABC结论:结论:直线直线l l 垂直线段垂直线段AAAA,BBBB,直线直线l l平分线段平分线段AAAA,BBBB或直或直线线l l 是线段是线段AAAA,BBBB的垂直平分的垂直平分线线 探索新知探索新知问题问题4 4以下图是一个

16、轴对称图形,你能发现什么以下图是一个轴对称图形,你能发现什么结结 论?能说明理由吗?论?能说明理由吗?ABlAB追问你能用数学语言概括前面追问你能用数学语言概括前面的结论吗?的结论吗?探索新知探索新知问题问题4 4以下图是一个轴对称图形,你能发现什么以下图是一个轴对称图形,你能发现什么结结论?能说明理由吗?论?能说明理由吗?ABlAB轴对称图形的性质:轴对称图形的性质:轴对称图形的对称轴,是任何轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线一对对应点所连线段的垂直平分线 探索新知探索新知问题问题4 4以下图是一个轴对称图形,你能发现什么以下图是一个轴对称图形,你能发现什么结结 论?能

17、说明理由吗?论?能说明理由吗?ABlAB课堂练习课堂练习练习练习1 1如下图的每个图形是轴对称图形吗?如如下图的每个图形是轴对称图形吗?如果是,指出它的对称轴果是,指出它的对称轴 课堂练习课堂练习练习练习2 2如下图的每幅图形中的两个图案是轴对称如下图的每幅图形中的两个图案是轴对称的吗?如果是,试着找出它们的对称轴,并找出一对对的吗?如果是,试着找出它们的对称轴,并找出一对对称点称点 1 1本节课学习了哪些主要内容?本节课学习了哪些主要内容?2 2轴对称图形和两个图形成轴对称的区别与联系是轴对称图形和两个图形成轴对称的区别与联系是 什么?什么?3 3成轴对称的两个图形有什么性质?轴对称图形有成轴对称的两个图形有什么性质?轴对称图形有 什么性质?我们是怎么探究这些性质的?什么性质?我们是怎么探究这些性质的?课堂小结课堂小结教科书习题教科书习题13.1第第1、2、3、4、5题题 布置作业布置作业

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中 > 数学 > 其它资料
版权提示 | 免责声明

1,本文(《圆的有关性质》课件(第3课时)-(高效课堂)获奖-人教数学2022.ppt)为本站会员(ziliao2023)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|