1、消元消元二元一次方程组的解法二元一次方程组的解法 (第(第1 1课时)课时)态度决定一切!知知之者不如之者不如好好之者,之者,好好之者不如之者不如乐乐之者。之者。本节学习目标本节学习目标 :1 1、会用、会用代入法代入法解二元一次方程组。解二元一次方程组。2 2、初步体会解二元一次方程组的基本思、初步体会解二元一次方程组的基本思 想想“消元消元”。3 3、通过对方程中未知数特点的观察和分析,、通过对方程中未知数特点的观察和分析,明确解二元一次方程组的主要思路是明确解二元一次方程组的主要思路是“消元消元”,从而促成,从而促成未知未知向向已知已知的转化,的转化,培养观察能力和体会化归的思想。培养观
2、察能力和体会化归的思想。1、什么是什么是二元一次方程二元一次方程,什么是什么是二元一次方程组二元一次方程组?2、什么是、什么是二元一次方程二元一次方程的解?的解?3、什么是、什么是二元一次方程组二元一次方程组的解?的解?1 1、用含、用含x x的代数式表示的代数式表示y y:x+y=22x+y=222、用含、用含y y的代数式表示的代数式表示x x:2x-7y=82x-7y=8 篮球联赛中每场比赛都要分出胜负,每队胜一篮球联赛中每场比赛都要分出胜负,每队胜一场得场得2 2分,负一场得分,负一场得1 1分分.如果某队为了争取较好如果某队为了争取较好名次,想在全部名次,想在全部2222场比赛中得场
3、比赛中得4040分,那么这个分,那么这个队队胜、胜、负负场数应分别是多少场数应分别是多少?解:设胜解:设胜x x场,负场,负y y场;场;22 yx402 yx是一元一次方程,相信大家都会解。那么是一元一次方程,相信大家都会解。那么根据上面的提示,你会解这个方程组吗?根据上面的提示,你会解这个方程组吗?由我们可以得到:由我们可以得到:xy 22再将中的再将中的y y换为换为x22就得到了就得到了解:设胜解:设胜x x场场,则有:则有:回顾与思考比较一下上面的比较一下上面的方程组方程组与与方程方程有有什么关系?什么关系?40)22(2xx 二元一次方程组中有两个未知数,二元一次方程组中有两个未知
4、数,如果消去其中一个未知数,将如果消去其中一个未知数,将二元一二元一次方程组次方程组转化为我们熟悉的转化为我们熟悉的一元一次一元一次方程方程,我们就可以先解出一个未知数,我们就可以先解出一个未知数,然后再设法求另一未知数然后再设法求另一未知数.这种将未知这种将未知数的个数由数的个数由多多化化少少、逐一解决的思想,、逐一解决的思想,叫做叫做消元消元思想思想.上面的解法,是由二元一次方程上面的解法,是由二元一次方程组中一个方程组中一个方程,将一个未知数用含另将一个未知数用含另一个未知数的式子表示出来,再代一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求入另一个方程,实现消元,进而求得这
5、个二元一次方程组的解,这种得这个二元一次方程组的解,这种方法叫方法叫代入消元法代入消元法,简称,简称代入法代入法 归归 纳:纳:试一试:试一试:用代入法解方程组用代入法解方程组 y=x3 3x8y=14 例题分析例题分析分析分析:方程中的方程中的(x(x3)3)替换方程替换方程(2)(2)中的中的y,y,从从而达到消元的目的而达到消元的目的.方程化为方程化为:3x8(x3)=14 (2)(2)方程组经过等量代换可以消去一个未知数,方程组经过等量代换可以消去一个未知数,变成一个一元变成一个一元 一次方程。一次方程。(1)(1)找到一个未知数的系数是找到一个未知数的系数是1 1的方程,表示的方程,
6、表示成成x=?x=?或或y=?.y=?.用代入法解方程组用代入法解方程组 2x+3y=16 x+4y=13 解:解:原方程组的解是原方程组的解是x=5y=2例例1(在实践中学习)在实践中学习)由由,得,得 x=13-4y 把代入把代入,得,得 2(13-4y)+3y=16 26 8y+3y=16 -5y=-10 y=2把把y=2代入代入,得,得 x=5把代入把代入可以吗?试可以吗?试试看试看把y=2代入代入 或可以吗?或可以吗?把求出的解把求出的解代入原方程代入原方程组,可以知组,可以知道你解得对道你解得对不对。不对。用代入法解方程组用代入法解方程组 xy=3 3x8y=14 练一练练一练解解
7、:将方程变形将方程变形,得得 y=xy=x3 3 (3)(3)解这个方程得解这个方程得:x=2将方程将方程(3)(3)代入代入(2)(2)得得 3x3x8(x8(x3)=14 3)=14 把把x=2x=2代入代入(3)(3)得得:y=:y=1 1所以这个方程组的解为所以这个方程组的解为:y=y=1 1x=2x=2y=2x x+y=12 x=y-524x+3y=65 x+y=11x-y=7 3x-2y=9x+2y=3课堂练习课堂练习解方程解方程例例2 学以致用学以致用解:设这些消毒液应该分装解:设这些消毒液应该分装x大瓶、大瓶、y小瓶。小瓶。根据题意可列方程组:由 得:xy25把 代入 得:22
8、50000025250500 xx解得:x=20000把x=20000代入 得:y=500005000020000yx答:这些消毒液应该分装答:这些消毒液应该分装2000020000大瓶和大瓶和5000050000小瓶。小瓶。根据市场调查,某种消毒液的大瓶装根据市场调查,某种消毒液的大瓶装(500g500g)和小瓶装()和小瓶装(250g250g),两种产品的销),两种产品的销售数量售数量(按瓶计算)(按瓶计算)的比为的比为 某厂每天某厂每天生产这种消毒液吨,这些消毒液应该分装大、生产这种消毒液吨,这些消毒液应该分装大、小瓶两种产品各多少瓶?小瓶两种产品各多少瓶?5:2225000002505
9、0025yxyx2250000025050025yxyx二元一次方程二元一次方程yx25 22500000250500yx变形xy25代入y=50000 x=20000解得x2250000025250500 xx一元一次方程消y用 代替y,消去未知数yx25xy25上面解方程组的过程可以用下面的框图表示:上面解方程组的过程可以用下面的框图表示:再议代入消元法再议代入消元法再练习:再练习:y=2x x+y=12 x=y-524x+3y=65 x+y=11x-y=7 3x-2y=9x+2y=3x=4y=8x=5y=15x=9y=2x=3y=0你解对了吗?1、用代入消元法解下列方程组、用代入消元法解
10、下列方程组112、若方程、若方程5x 2m+n+4y 3m-2n=9是关于是关于x、y的的二元一次方程,求二元一次方程,求m、n 的值的值.解:解:根据已知条件可根据已知条件可列方程组:列方程组:2m+n=13m 2n=1由得:由得:把代入得:把代入得:n=1 2m 3m 2(1 2m)=13m 2+4m=17m=37321n71n7173的值为,的值为nm把把m 代入,得:代入,得:7373m主要步骤:主要步骤:基本思路基本思路:写解写解求解求解代入代入消去一个消去一个元元分别求出分别求出两个两个未知数的值未知数的值写出写出方程组方程组的解的解变形变形用用一个未知数一个未知数的代数式的代数式
11、表示表示另一个未知数另一个未知数消元消元:二元二元1、解二元一次方程组的基本思路是什么?、解二元一次方程组的基本思路是什么?2、用代入法解方程的步骤是什么?、用代入法解方程的步骤是什么?一元一元今天的作业:今天的作业:课本课本103103页习页习 题第题第2 2题题谢谢同学们的合作!祝同学们学习进步!轴对称轴对称引言引言对称现象无处不在,从自然景观到艺术作对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!以找到对称的例子,对称给我们带来美的感受!引出新知引出新知探索新知探索新
12、知问题问题1如图,把一张纸对折,剪出一个图案(折如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花观察得到的窗花,你能发现它们有什么共美丽的窗花观察得到的窗花,你能发现它们有什么共同的特点吗?同的特点吗?追问追问你能举出一些轴对称图形的例子吗?你能举出一些轴对称图形的例子吗?探索新知探索新知如果一个平面图形沿一条直线折叠,直线两旁的部如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直分能够互相重合,这个图形就叫做轴对称图形,这条直 线就是它的对称轴这时,我们也说
13、这个图形关于这条线就是它的对称轴这时,我们也说这个图形关于这条 直线(成轴)对称直线(成轴)对称共同特征:共同特征:每一对图形沿着虚线折叠,左边的图形都能与右边每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合的图形重合 探索新知探索新知问题问题2观察下面每对图形(如图),你能类比前观察下面每对图形(如图),你能类比前面的内容概括出它们的共同特征吗?面的内容概括出它们的共同特征吗?追问追问1你能再举出一些两个图形成轴对称的例子吗?你能再举出一些两个图形成轴对称的例子吗?探索新知探索新知把一个图形沿着某一条直线折叠,如果它能够与另把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么
14、就说这两个图形关于这条直线(成一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点应点,叫做对称点 两者的区别:两者的区别:轴对称图形指的是一个图形沿对称轴折叠后这个图轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,而两个图形成轴对称指的是两形的两部分能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合够重合探索新知探索新知追问追问2你能结合具体的图形说明轴对称图形和两个你能结合具体
15、的图形说明轴对称图形和两个 图形成轴对称有什么区别与联系吗图形成轴对称有什么区别与联系吗?两者的联系:两者的联系:把成轴对称的两个图形看成一个整体,它就是一个把成轴对称的两个图形看成一个整体,它就是一个轴对称图形把一个轴对称图形沿对称轴分成两个图轴对称图形把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称形,这两个图形关于这条轴对称 探索新知探索新知追问追问2你能结合具体的图形说明轴对称图形和两个你能结合具体的图形说明轴对称图形和两个 图形成轴对称有什么区别与联系吗图形成轴对称有什么区别与联系吗?追问追问1你能说明其中你能说明其中的道理吗?的道理吗?探索新知探索新知问题问题3如图,
16、如图,ABC 和和ABC关于直线关于直线MN 对称,点对称,点A,B,C分别是点分别是点A,B,C 的对称点,线的对称点,线 段段AA,BB,CC与直线与直线MN 有什么关系?有什么关系?ABCMNPABC探索新知探索新知追问追问2上面的问题说明上面的问题说明“如果如果ABC 和和ABC关于直线关于直线MN 对称,那么,直线对称,那么,直线MN 垂直垂直线段线段AA,BB和和CC,并且直线,并且直线MN 还平分线段还平分线段AA,BB和和CC”如如果将其中的果将其中的“三角形三角形”改为改为“四边形四边形”“”“五边形五边形”其其他条件不变,上述结论还成他条件不变,上述结论还成立吗?立吗?AB
17、CMNPABC经过线段中点并且垂直经过线段中点并且垂直于这条线段的直线,叫做这于这条线段的直线,叫做这条线段的垂直平分线条线段的垂直平分线 探索新知探索新知问题问题3如图,如图,ABC 和和ABC关于直线关于直线MN 对称,点对称,点A,B,C分别是点分别是点A,B,C 的对称点,线的对称点,线段段AA,BB,CC与直线与直线MN 有什么关系?有什么关系?ABCMNPABC探索新知探索新知追问追问3你能用数学语言概括前面的结论吗?你能用数学语言概括前面的结论吗?成轴对称的两个图形的性质:成轴对称的两个图形的性质:如果两个图形关于某条如果两个图形关于某条直线对称,那么对称轴是任直线对称,那么对称
18、轴是任何一对对应点所连线段的垂何一对对应点所连线段的垂直平分线即对称点所连线直平分线即对称点所连线段被对称轴垂直平分;对称段被对称轴垂直平分;对称轴垂直平分对称点所连线段轴垂直平分对称点所连线段 ABCMNPABC结论:结论:直线直线l 垂直线段垂直线段AA,BB,直线直线l平分线段平分线段AA,BB(或直(或直线线l 是线段是线段AA,BB的垂直平分的垂直平分线)线)探索新知探索新知问题问题4下图是一个轴对称图形,你能发现什么结下图是一个轴对称图形,你能发现什么结 论?能说明理由吗?论?能说明理由吗?ABlAB追问你能用数学语言概括前面追问你能用数学语言概括前面的结论吗?的结论吗?探索新知探
19、索新知问题问题4下图是一个轴对称图形,你能发现什么结下图是一个轴对称图形,你能发现什么结论?能说明理由吗?论?能说明理由吗?ABlAB轴对称图形的性质:轴对称图形的性质:轴对称图形的对称轴,是任何轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线一对对应点所连线段的垂直平分线 探索新知探索新知问题问题4下图是一个轴对称图形,你能发现什么结下图是一个轴对称图形,你能发现什么结 论?能说明理由吗?论?能说明理由吗?ABlAB课堂练习课堂练习练习练习1 1如图所示的每个图形是轴对称图形吗?如如图所示的每个图形是轴对称图形吗?如果是,指出它的对称轴果是,指出它的对称轴 课堂练习课堂练习练习练习2
20、如图所示的每幅图形中的两个图案是轴对称如图所示的每幅图形中的两个图案是轴对称的吗?如果是,试着找出它们的对称轴,并找出一对对的吗?如果是,试着找出它们的对称轴,并找出一对对称点称点 (1)本节课学习了哪些主要内容?)本节课学习了哪些主要内容?(2)轴对称图形和两个图形成轴对称的区别与联系是)轴对称图形和两个图形成轴对称的区别与联系是 什么?什么?(3)成轴对称的两个图形有什么性质?轴对称图形有)成轴对称的两个图形有什么性质?轴对称图形有 什么性质?我们是怎么探究这些性质的?什么性质?我们是怎么探究这些性质的?课堂小结课堂小结教科书习题教科书习题13.1第第1、2、3、4、5题题 布置作业布置作业