1、第 一 章 有 理 数1.4.2 有 理 数 的 除 法第 一 课 时2 0 2 0【学习目标】理解除法的意义,掌握有理数的除法法则;01能熟练进行有理数的除法运算;02通过乘除法之间的逆运算,培养学生逆向思维的能力。03【课前预习】1计算(1)(5)()的结果是()A1BC25D1 2 计算3()()的结果是()A3B3CD 3 的倒数除以4的相反数的商是()A5 B5 CD 4若两个数的和为负数,商也为负数,则这两个数()A同为负数 B同为正数 C一正一负且正数的绝对值较大 D一正一负且负数的绝对值较大 5与234运算结果相同的是()A2(34)B2(34)C2(43)D324514343
2、1141631631515【课前预习】答案 1B 2C 3C 4D 5B 你能很快地说出下列各数的倒数吗?原数-5倒数89321891517-135701【学习探究】1.1.计算:(1)1(1)1(-)=_,1(-)=_,1(-)=_.(-)=_.(2)(-)(2)(-)(-)=_,(-)(-)=_,(-)(-80)=_.(-80)=_.23323214180142020202032探究2.2.计算:(1)(-12)(1)(-12)6=_;(-9)6=_;(-9)(-3)=_.(-3)=_.(2)(-0.16)(2)(-0.16)0.04=_;00.04=_;0(-5)=_.(-5)=_.-2
3、-23 3-4-40 0 8(-4)=_ -366=_ -12/25(-3/5)=_ -729=_探究-2-64/5-8(-4)(-2)=8 6(-6)=-36 (-3/5)(4/5)=-12/25 -89=-72 填空:8(-1/4)=_ 36(1/6)=_(-12/25)(-5/3)=_-72(1/9)=_-2-64/5-8问题:上面各组数计算结果有什么关系?由此你能得到有理数的除法法则吗?8(-4)=_ -36 6=_ -12/25 (-3/5)=_ -72 9=_-2-64/5-81(0)bbaba 有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.两数相除,同号得 ,异号得
4、,并把绝对值相 ,0除以任何一个不等于0的数,都得 .正负除0两数相除的符号法则:到现在为止我们有了两个除法法则,那么两个法则是不是都可以用于解决两数相除呢?1.两个法则都可以用来求两个有理数相除.2.如果两数相除,能够整除的就选择法则二,不能够整除的就选择用法则一.思考:要点归纳:例1 (1)(-18)6;(2)(-(-27)(-9);解:(1)原式=(-18)(2)原式=(-27)=-;136-=;139 例2 计算:(1)(42)(6);(2)(12);(3)(4)0(3.72);(5)1(1.5);(6)(4.7)1.+12 -;311342 导引:(1)运用法则,同号得正,先定符号,
5、再算绝 对值 (2)运用法则,除号变乘号,除数变为它的 倒数 (3)带分数化为假分数再相除 (4)0除以任何一个不为0的数都等于0.(5)小数化为分数再相除 (6)任何数除以1都等于它本身解:(1)(42)(6)7.(2)(12)(3)(4)0(3.72)0.(5)1(1.5)1 (6)(4.7)14.7.+=(-)(+)=-112224.2 =(-)(-)3177134242 =1 1-322.233 =(-)721.472 总总 结结 在进行有理数的除法运算时,要根据题目的特点,恰当地选择有理数除法法则;当能整除时,往往采用法则直接除;当不能整除,特别是当除数是分数时,往往采用法则,把除法转化为乘法再计算 一、有理数除法法则:1.)0(1bbaba 2.两数相除,同号得正正,异号得负负,并把绝对值相除除.0除以任何一个不等于0的数,都得0 0 二、有理数除法化为有理数乘法以后,可以利 用有理数乘法的运算律简化运算课堂小结 三、乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算)【课后练习】【课后练习】答案 A 2B 3B 4D 5C 6C 7C 8A 9A 10B 114 121 13 1478分 1594715