八年级下册数学课件(冀教版)菱形-第二课时.ppt

上传人(卖家):ziliao2023 文档编号:6567491 上传时间:2023-07-21 格式:PPT 页数:21 大小:796KB
下载 相关 举报
八年级下册数学课件(冀教版)菱形-第二课时.ppt_第1页
第1页 / 共21页
八年级下册数学课件(冀教版)菱形-第二课时.ppt_第2页
第2页 / 共21页
八年级下册数学课件(冀教版)菱形-第二课时.ppt_第3页
第3页 / 共21页
八年级下册数学课件(冀教版)菱形-第二课时.ppt_第4页
第4页 / 共21页
八年级下册数学课件(冀教版)菱形-第二课时.ppt_第5页
第5页 / 共21页
点击查看更多>>
资源描述

1、第二十二章 四边形四边形22.5 菱形第2课时1.理解并掌握菱形的两个判定方法.(重点)2.会用这些菱形的判定方法进行有关的证明和计算.(难点)学习目标学习目标复习引入问题:什么是菱形?菱形有哪些性质?菱形的定义:有一组邻边相等的平行四边形.菱形的性质:1.轴对称图形.2.四边相等.3.对角线互相垂直平分.ABCD思考:通过菱形的定义我们可以确定四边形是否为菱形,那么还有其他的判定方法吗?菱形的判定定理1一小刚小刚:分别以A、C为圆心,以大于 AC的长为半径作弧,两条 弧分别相交于点B,D,依次 连接A、B、C、D四点.已知线段AC,你能用尺规作图的方法作一个菱形ABCD,使AC为菱形的一条对

2、角线吗?CABD想一想:1.你是怎么做的,你认为小刚的作法对吗?2.怎么验证四边形ABCD是菱形?提示:AB=BC=CD=AD12合作探究证明:AB=BC=CD=AD;AB=CD,BC=AD.四边形ABCD是平行四边形.又AB=BC,四边形ABCD是菱形.ABCD已知:如图,四边形ABCD中,AB=BC=CD=AD.求证:四边形ABCD是菱形.四条边相等的四边形是菱形.定理定理证明下列命题中正确的是()A.一组邻边相等的四边形是菱形B.三条边相等的四边形是菱形C.四条边相等的四边形是菱形D.四个角相等的四边形是菱形C练一练例1.如图,AD是ABC的角平分线,DEAC交AB于点E,DFAB交AC

3、于点F.试问四边形AEDF是菱形吗?说明你的理由.ABCDEF123解:四边形AEDF是菱形.理由如下:DE AC,DFAB 四边形AEDF是平行四边形 2=3 AD是ABC的角平分线 1=2 1=3,AE=DE 四边形 AEDF是菱形典例精析2例2:已知:如图,在ABC中,AD是角平分线,点E、F分别在AB、AD上,且AE=AC,EF=ED.求证:四边形CDEF是菱形.ACBEDF证明:1=2,又又AE=AC,ACD AED(SAS).同理同理ACFAEF(SAS).CD=ED,CF=EF.又EF=ED,四边形ABCD是菱形(四边相等的四边形是菱形).1菱形的判定定理2二合作探究 用一长一短

4、两根细木条,在它们的中点处固定一个小钉,做成一个可以转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?猜想:对角线互相垂直的平行四边形是菱形.ABCOD已知:如图,四边形ABCD是平行四边形,对角线AC与BD相交于点O,ACBD.求证:ABCD是菱形.证明:四边形ABCD是平行四边形.OA=OC.又ACBD,BD是线段AC的垂直平分线.BA=BC.四边形ABCD是菱形(菱形的定义).对角线互相垂直的平行四边形是菱形.定理定理证明 下列条件中,不能判定四边形ABCD为菱形的是()A.AC与BD互相平分,ACBDB.AB=BC=CD=DAC.AB=BC,AD=C

5、D,AC BDD.AB=CD,AD=BC,AC BDABCODC练一练 1.直接根据“四边相等”判定四边形是菱形.2.先判定四边形是平行四边形,再判定四边形是菱形;方法例3.如图,已知平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F,求证:四边形AFCE是菱形 ABCDEFO12证明:四边形ABCD是平行四边形,AEFC.1=2.EF垂直垂直平分AC,AO=OC.又AOE=COF,AOECOF,EO=FO.四边形AFCE是平行四边形.又EFAC 四边形AFCE是菱形.例4.如图,在平行四边形ABCD中,AC=6,BD=8,AD=5.求AB的长.解:四边形ABCD为平行四

6、边形,DAO是直角三角形.DOA=90,即DBAC.平行四边形ABCD是菱形.(对角线互相垂直 的平行四边形是菱形)OAAC,ODBD.113422又 AD=5,满足 ADOAOD 222 AB=AD=5.请你动脑筋把两张等宽的纸条交叉重叠在一起,你能判断重叠部分ABCD的形状吗?ACDB四边形ABCD是菱形,为什么?DCBA分析:易知四边形ABCD是平行四边形,只需证一组邻边相等或对角线互相垂直即可.EF由题意可知BC边上的高和CD边上的高相等,然后通过证ABEADF,即得AB=AD.请补充完整的证明过程当堂练习当堂练习1.判断下列说法是否正确(1)对角线互相垂直的四边形是菱形;(2)对角线

7、互相垂直且平分的四边形是菱形;(3)对角线互相垂直,且有一组邻边相等 的四边形是菱形;(4)两条邻边相等,且一条对角线平分一 组对角的四边形是菱形 2.如图,将ABC沿BC方向平移得到DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()AAB=BC BAC=BC CB=60 DACB=60 B解析:将ABC沿BC方向平移得到DCE,ABCD,四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形故选:BABCDOE3.如图,矩形ABCD的对角线相交于点O,DEAC,CE BD.求证:四边形OCED是菱形证明:DEAC,CEBD,四边形OCED是平行四边形,四边形ABCD

8、是矩形,OC=OD,四边形OCED是菱形 4.如图,ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CEAB交MN于点E,连接AE、CD.求证:四边形ADCE是菱形BCADOEMN【分析】根据垂直平分线的性质可得AE=CE,AD=CD,OA=OC,AOD=EOC=90.再结合CEAB,可证得ADOCEO,从而根据由一组对边平行且相等知,四边形ADCE是平行四边形.再结合AOD=90可证得四边形ADCE为菱形 证明:MN是AC的垂直平分线,AE=CE,AD=CD,OA=OC,AOD=EOC=90.CEAB,DAO=ECO,ADOCEO(ASA)AD=CE,OD=OE,OD=OE,OA=OC,四边形ADCE是平行四边形又AOD=90,四边形ADCE是菱形 课堂小结课堂小结有一组邻边相等的平行四边形是菱形.定理2:对角线互相垂直的平行四边形 是菱形.定理1:四边相等的四边形是菱形.运用定理进行计算和证明.菱形的判定定义定理

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中 > 数学 > 冀教版 > 八年级下册
版权提示 | 免责声明

1,本文(八年级下册数学课件(冀教版)菱形-第二课时.ppt)为本站会员(ziliao2023)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|