1、1.探索“两边成比例且夹角相等的两个角形相似的判定定理;2.会根据边和角的关系来判定两个三角形相似.重点、难点学习目标问题1 我们学习过哪些判定三角形全等的方法?问题2 我们目前知道的两个三角形相似有哪些判定方法?导入新课导入新课回忆与思考讲授新课讲授新课合作探究 任意画ABC;再画ABC,使A=A,且 量出BC及BC的长,计算 的值,并比较是否三边都对应成比例?量出B与B的度数,B=B吗?由此可推出C=C吗?为什么?由上面的画图,你能发现ABC与ABC有何关系?与你周围的同学交流.;ABACkA BA C我发现这两个三角形是相似的BCB C两边成比例且夹角相等的两个三角形相似我们来证明一下前
2、面得出的结论:如图,在ABC与ABC中,A=A.ABACA BA C在ABC的边AB上截取点D,使AD=AB过点D作DEBC,交AC于点E.DEBC,ADEABC.A DA EA BA CABCABC.BACDEBAC AD=AB,AE=AC.又A=A.ADEABC,ABCABC.ABACA BA C.A DA EACA BA CA CBACDEBAC由此得到三角形的判定定理:两边成比例且夹角相等的两个三角形相似例1 在ABC和DEF中,C=F=70,AC=3.5cm,BC=2.5 cm,DF=2.1 cm,EF=1.5 cm.求证:DEFABC.AFECBD典例精析证明:AC=3.5cm,B
3、C=2.5cm,DF=2.1cm,EF=1.5cm,2.131.53,3.552.55DFEFACBCDFEFACBC又C=F=70,DEFABC(两边成比例且夹角相等的两个三角形相似)如图,ABC与ADE都是等腰三角形,AD=AE,AB=AC,DAB=CAE.求证:ABCADE.ADAE,ABAC,ADAE.ABACDABCAE,DABBAECAEBAE,DAEBAC,即ABCADE.练一练证明:解:AE=1.5,AC=2,又EAD=CAB,ADEABC DE=例2 如图,D,E分别是ABC的边AC,AB上的点,AE=1.5,AC=2,BC=3,且 ,求DE的长.ACB34ADAB3.4AE
4、AC3,4ADAB.ADAEABAC34DEADBCAB39.44BC ED例3 如图,在 ABC 中,CD是边AB上的高,且 求证:ACB=90ABCD证明:CD是边AB上的高,ADC=CDB=90.ADCDCDBDADCCDB.ACD=B.ACB=ACD+BCD=B+BCD=90.ADCDCDBD如果两个三角形的两边成比例,但相等的角不是这两边的夹角,那么两个三角形是否相似呢?画一画,量一量.ABCDEF不相似类比三角形全等的判定探究归纳归纳:如果两个三角形两边对应成比例,但相等的角不是两条对应边的夹角,那么两个三角形不一定相似.注意:相等的角一定要是两条对应边的夹角.1.判断图中AEB
5、和FEC是否相似?解:AEBFEC.12,54303645EAFCB12543362AEFE,453302BECE,AEBEFECE当堂练习当堂练习()2.如图,D是ABC一边BC上一点,连接AD,使 ABC DBA的条件是 A.AC:BC=AD:BD B.AC:BC=AB:AD C.AB2=CDBC D.AB2=BDBCDACBD(ABBCDBBA学习目标1.探索两角分别相等的两个三角形相似的判定定理.2.掌握利用两角来判定两个三角形相似的方法,并 能进行相关计算.(重点、难点)3.掌握判定两个直角三角形相似的方法,并能进行 相关计算.学校举办活动,需要三个内角分别为90,60,30的形状相
6、同、大小不同的三角纸板假设干.小明手上的测量工具只有一个量角器,他该怎么做呢?导入新课导入新课情境引入?讲授新课讲授新课问题一 度量 AB,BC,AC,AB,BC,AC 的长,并计算出它们的比值.你有什么发现?CABABC两角分别相等的两个三角形相似一合作探究 与同伴合作,一人画 ABC,另一人画 ABC,使A=A,B=B,探究以下问题:这两个三角形是相似的证明:在 ABC 的边 AB或 AB 的延长线上,截取 AD=AB,过点 D 作 DE/BC,交 AC 于点 E,那么有ADE ABC,ADE=B.B=B,ADE=B.又 AD=AB,A=A,ADE ABC,ABC ABC.CAABBCDE
7、问题二 试证明ABCABC.由此得到利用两组角判定两个三角形相似的定理:两角分别相等的两个三角形相似.A=A,B=B,ABC ABC.符号语言:CABABC归纳:如图,ABC中,DEBC,EFAB,求证:ADEEFC.AEFBCD证明:DEBC,EFAB,AEDC,AFEC.ADEEFC.练一练证明:在 ABC中,A=40 ,B=80 ,C=180 AB=60.在DEF中,E=80,F=60.B=E,C=F.ABC DEF.例1 如图,ABC 和 DEF 中,A=40,B=80,E=80,F=60 求证:ABC DEF.ACBFED典例精析例2 如图,弦 AB 和 CD 相交于 O 内一点 P
8、,求证:PA PB=PC PD.证明:连接AC,DB.A 和 D 都是弧 CB 所对的圆周角,A=_,同理 C=_,PAC PDB,_ 即PA PB=PC PD.DBPAPCPDPBODCBAP1.如图,在如图,在 ABC 和和 ABC 中,假设中,假设A=60,B =40,A=60,当,当C=时,时,ABC ABC.练一练CABBCA802.如图,如图,O 的弦的弦 AB,CD 相交于点相交于点 P,假设,假设 PA=3,PB=8,PC=4,那么,那么 PD=.6ODCBAP ADAE.ACAB解:EDAB,EDA=90 .又C=90,A=A,AED ABC.判定两个直角三角形相似二例2 如
9、图,在 RtABC 中,C=90,AB=10,AC=8.E 是 AC 上一点,AE=5,EDAB,垂足为D.求AD的长.DABCE 8 54.10AC AEADAB由此得到一个判定直角三角形相似的方法:有一个锐角相等的两个直角三角形相似.归纳:对于两个直角三角形,我们还可以用“HL判定它们全等.那么,满足斜边和一直角边成比例的两个直角三角形相似吗?思考:如图,在 RtABC 和 RtABC 中,C=90,C=90,.求证:RtABC RtABC.ABACA BA C CAABBC要证明两个三角形相似,即是需要证明什么呢?目标:BCABACBCA BAC证明:设_=k,那么AB=kAB,AC=k
10、AB.由 ,得 .Rt ABC Rt ABC.22BCABAC,22.BCABAC .kB CkB C ABACA BA C 勾股定理BCABACB CA BA C CBCAkBAkCBACABCBBC222222 CAABBC由此得到另一个判定直角三角形相似的方法:斜边和一直角边成比例的两个直角三角形相似.归纳:例3 如图,:ACB=ADC=90,AD=2,CD=,当 AB 的长为 时,ACB 与ADC相似2CABD解析:ADC=90,AD=2,CD=,要使这两个直角三角形相似,有两种情况:(1)当 RtABC RtACD 时,有 AC:AD AB:AC,即 :2=AB:,解得 AB=3;2
11、2222226.ACADCD66CABD22(2)当 RtACB RtCDA 时,有 AC:CD AB:AC,即 :=AB:,解得 AB=当 AB 的长为 3 或 时,这两个直角三角形相似6263 23 2CABD22 在 RtABC 和 RtABC 中,C=C=90,依据以下各组条件判定这两个三角形是否相似.(1)A=35,B=55:;(2)AC=3,BC=4,AC=6,BC=8:;(3)AB=10,AC=8,AB=25,BC=15:.练一练相似相似相似当堂练习当堂练习1.如图,如图,ABDE,AFC E,那么图中相,那么图中相 似三角形共有似三角形共有 ()A.1对对 B.2对对 C.3对
12、对 D.4对对C2.如图,如图,ABC中,中,AE 交交 BC 于点于点 D,C=E,AD:DE=3:5,AE=8,BD=4,那么,那么DC的长等于的长等于 ()A.154B.125C.203D.174ACABDEABDC3.如图,点 D 在 AB上,当 (或 =)时,ACDABC;ACD ACB B ADC4.如图,在如图,在 RtABC 中,中,ABC=90,BDAC 于于D.假设假设 AB=6,AD=2,那么,那么 AC=,BD=,BC=.18DBCA4 212 2证明:ABC 的高AD、BE交于点F,FEA=FDB=90,AFE=BFD(对顶角相等).FEA FDB,5.如图,ABC 的高 AD、BE 交于点 F 求证:.AFEFBFFD.AFEFBFFDDCABEF证明:BAC=1+DAC,DAE=3+DAC,1=3,BAC=DAE.C=1802DOC,E=1803AOE,DOC=AOE对顶角相等,C=E.ABCADE.6.如图,1=2=3,求证:ABC ADEABCDE132O