1、分式的加法(第二课时)复习回顾计算:112315412异分母分数的加法法则:异分母的分数相加,先通分,变为同分母的分数,再相加.32663512122.356;812新课讲授试一试:先通分,变为同分母的分式,再相加.11abbaabababab;如何通分?例 通分:211(1),234xyxyxy;1122323pqpq();,+-221(3),.42aaa最简公分母取各分母的所有因式的最高次幂的积作公分母.例 通分:211(1),234xyxyxy;12x2y最简公分母是:221=22612,xxyxy126 y26y222244=33412,xxxxyyxxy2.21+31+33=4431
2、2yyyy+yxyxyyxy例 通分:1122323pqpq();,+-最简公分母是:2323pqpq()()+-+-123232323pqpqpqpq,()()-+-123232323pqpqpqpq()()+.-+-例 通分:221(3),.42aaa12.222aaaa因式分解222=422aaaaa,通分的关键是寻找最简公分母,方法是:(1)系数:把各分式分母系数的最小公倍数作为最简公分母的系数;(2)字母因式:所有出现过的字母因式(或因式分解后得到的)都要取到;(3)指数:相同因式取指数最高的.再试一试:异分母分式的加法法则:异分母的分式相加,先通分,变为同分母的分式,再相加.acb
3、dadbcbdbd.adbcbd思路思路:通分通分 异异分母分母分式相分式相加加同分母同分母分式相分式相加加 分子分子(整式整式)相加相加分母不变分母不变 例 计算:211(1)234xyxyxy;1122323pqpq();+-221(3).42aaa例 计算:211(1)234xyxyxy;解:原式2222226433121212yxyyxyxyxy2222643312yxyyxy22243912xyyxy;通分同分母分式相加化简分子例 计算:1122323pqpq();+-解:原式232323232323pqpqpqpqpqpq()()()()-+-+=+=+-+-+-+-2323232
4、3pqpqpqpq()()-+-+=+-+-42323ppqpq()()=+-+-22449ppq;=-化简分母例 计算:221(3).42aaa解:原式222222aaaaaa2(2)(2)(2)aaaa2(2)(2)aaa(2)(2)(2)aaa1.2a 因式分解步骤:通分同分母分式相加化简分子约分(因式分解)化简分母练习 计算:221(1)ba bab;211(2).121xxx练习 计算:221(1)ba bab;解:原式2222baba ba b22baba b22(1)baa b21aa b;练习 计算:解:原式211(2).121xxx2111(1)xx2211(1)(1)xxx
5、21 1(1)xx 2(1)xx2.21xxx例 计算:解:原式23.(3)3xxxx23(3)3xxxx223(3)(3)(3)xx xxx2233(3)xxxx226.69xxxx巩固提高例 计算:或者:原式23.(3)3xxxx226.69xxxx23(3)xx226(3)xxx2233(3)xxxx2(3)(3)xxx练习 计算:11.1aa解:原式1(1)(1)11aaaa1(1)1aa21111aaa2111aa2.1aa课堂小结 1异分母分式的加法法则;2通分的方法;3计算结果要化为最简分式.课后作业 计算:2211123c dcd();+(2)32baab;212(3)11aa;232(4).11xxx