1、 绝密绝密启用前启用前 2020 年普通高等学校招生全国统一考试年普通高等学校招生全国统一考试 理科数学理科数学 注意事项:注意事项: 1答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上. 2回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,如需改动, 用橡皮擦干净后,再选涂其他答案标号用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上。写在本试卷回答非选择题时,将答案写在答题卡上。写在本试卷
2、上无效上无效. 3考试结束后,将本试卷和答题卡一并交回考试结束后,将本试卷和答题卡一并交回. 一、选择题:本题共一、选择题:本题共 12 小题,每小题小题,每小题 5分,共分,共 60 分。在每小题给出的四个选项中,只有一项分。在每小题给出的四个选项中,只有一项 是符合题目要求的是符合题目要求的. 1.若 z=1+i,则|z22z|=( ) A. 0 B. 1 C. 2 D. 2 2.设集合 A=x|x240,B=x|2x+a0,且 AB=x|2x1,则 a=( ) A 4 B. 2 C. 2 D. 4 3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长
3、的正方 形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为 ( ) A. 51 4 B. 51 2 C. 51 4 D. 51 2 4.已知 A 为抛物线 C:y2=2px(p0)上一点,点 A到 C的焦点的距离为 12,到 y 轴的距离为 9,则 p=( ) A. 2 B. 3 C. 6 D. 9 5.某校一个课外学习小组为研究某作物种子的发芽率 y和温度 x(单位: C)的关系,在 20 个不同的温度条 件下进行种子发芽实验,由实验数据( ,)(1,2,20) ii x yi 得到下面的散点图: 由此散点图,在 10 C 至 40 C 之间,下面四个
4、回归方程类型中最适宜作为发芽率 y和温度 x回归方程类型 的是( ) A. yabx B. 2 yabx C. exyab D. lnyabx 6.函数 43 ( )2f xxx的图像在点(1(1)f,处的切线方程为( ) A. 21yx B. 21yx C. 23yx D. 21yx 7.设函数( )cos () 6 f xx在 ,的图像大致如下图,则 f(x)的最小正周期为( ) A. 10 9 B. 7 6 C. 4 3 D. 3 2 8. 2 5 ()()xx y x y的展开式中 x3y3的系数为( ) A. 5 B. 10 C. 15 D. 20 9.已知 ()0,,且3cos2
5、8cos5,则sin( ) A. 5 3 B. 2 3 C. 1 3 D. 5 9 10.已知, ,A B C为球O的球面上的三个点, 1 O为ABC的外接圆,若 1 O的面积为4, 1 ABBCACOO,则球O的表面积为( ) A. 64 B. 48 C. 36 D. 32 11.已知M: 22 2220 xyxy,直线l:220 xy,P为l上的动点,过点P作M的切线 ,PA PB,切点为,A B,当| |PMAB最小时,直线AB的方程为( ) A. 210 xy B. 210 xy C. 210 xy D. 210 xy 12.若 24 2log42log ab ab,则( ) A. 2
6、ab B. 2ab C. 2 ab D. 2 ab 二、填空题:本题共二、填空题:本题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分。分。 13.若 x,y满足约束条件 220, 10, 10, xy xy y 则 z=x+7y 的最大值为_. 14.设, a b为单位向量,且| | 1ab ,则|ab_. 15.已知 F为双曲线 22 22 :1(0,0) xy Cab ab 的右焦点,A为 C 的右顶点,B为 C 上的点,且 BF 垂直于 x 轴.若 AB 的斜率为 3,则 C的离心率为_. 16.如图,在三棱锥 PABC的平面展开图中,AC=1,3ABAD,ABAC,ABA
7、D,CAE=30 , 则 cosFCB=_. 三、解答题:共三、解答题:共 70 分分.解答应写出文字说明、证明过程或演算步骤解答应写出文字说明、证明过程或演算步骤.第第 1721 题为必考题,每个题为必考题,每个 试题考生试题考生都必须作答都必须作答.第第 22、23 题为选考题,考生根据要求作答题为选考题,考生根据要求作答. (一)必考题:共(一)必考题:共 60 分分. 17.设 n a是公比不为 1 的等比数列, 1 a为 2 a, 3 a的等差中项 (1)求 n a的公比; (2)若 1 1a ,求数列 n na的前n项和 18.如图,D为圆锥顶点,O是圆锥底面的圆心,AE为底面直径
8、,AE ADABC是底面的内接正 三角形,P为DO上一点, 6 6 PODO (1)证明:PA 平面PBC; (2)求二面角BPCE余弦值 19.甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛 的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰; 当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、 乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为 1 2 , (1)求甲连胜四场的概率; (2)求需要进行第五场比赛概率; (3)求丙最终获胜的概率. 20.已知 A、B分
9、别为椭圆 E: 2 2 2 1 x y a (a1)的左、右顶点,G为 E 的上顶点,8AG GB,P为直线 x=6 上的动点,PA 与 E的另一交点为 C,PB与 E 的另一交点为 D (1)求 E 的方程; (2)证明:直线 CD过定点. 21.已知函数 2 ( )exf xaxx. (1)当 a=1时,讨论 f(x)的单调性; (2)当 x0 时,f(x) 1 2 x3+1,求 a 的取值范围. (二)选考题:共(二)选考题:共 10 分。请考生在第分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第一题中任选一题作答。如果多做,则按所做的第一 题计分。题计分。 选修选修 44:坐标系与参数方程:坐标系与参数方程 22.在直角坐标系xOy中,曲线 1 C的参数方程为 cos, sin k k xt yt (t为参数)以坐标原点为极点,x轴正半轴 为极轴建立极坐标系,曲线 2 C的极坐标方程为4 cos16 sin30 (1)当1k 时, 1 C是什么曲线? (2)当4k 时,求 1 C与 2 C的公共点的直角坐标 选修选修 45:不等式选讲:不等式选讲 23.已知函数 ( ) |31| 2|1|f xxx (1)画出( )yf x的图像; (2)求不等式 ( )(1)f xf x 的解集