1、16.3 角的平分线导入新课讲授新课当堂练习课堂小结1.理解并掌握角平分线的性质定理及其逆定理.(难点)2.能利用角平分线的性质定理及其逆定理证明相关结论并应用.(重点)3.能利用尺规作出一个已知角的角平分线.1.角平分线的概念一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线.OBCA122.下图中能表示点P到直线l的距离的是 .线段PC的长PlABCD3.下列两图中线段AP能表示直线l1上一点P到直线l2 2的距离的是 .AAPPl1l2l1l2图1图2图1角平分线的性质定理如图,任意作一个角AOB,作出AOB的平分线OC.在OC上任取一点P,过点P画出OA,OB的垂线,分别记垂
2、足为D、E,测量PD,PE并作比较,你得到什么结论?在OC上再取几个点试一试.PAOBCDEPD=PE已知:如图,AOC=BOC,点P在OC上,PDOA,PEOB,垂足分别为D,E.求证:PD=PE.PAOBCDE证明:PDOA,PEOB,PDO=PEO=90.在PDO和和PEO中,PDO=PEO,AOC=BOC,OP=OP,PDO PEO(AAS).PD=PE.u 性质定理:角的平分线上的点到角的两边的距离相等.应用所具备的条件:(1)角的平分线;(2)点在该平分线上;(3)垂直距离.定理的作用:证明线段相等.u应用格式:OP 是AOB的平分线,PD=PE(在角的平分线上的点到这个角的两边的
3、距离相等).推理的理由有三个,必须写完全,不能少了任何一个.PDOA,PEOB,BADOPEC判一判:(1)如图,AD平分BAC(已知),=,()在角的平分线上的点到这个角的两边的距离相等BD CDBADC(2)如图,DCAC,DBAB (已知).=,()在角内任意一条线上的点到这个角的两边的距离相等BD CDBADC例1 已知:如图,在ABC中,AD是它的角平分线且BD=CDB=C,DEAB,DFAC.垂足分别为E,F.求证:EB=FC.ABCDEF分析:先利用角平分线的性质定理得到DE=DF,再利用全等证明RtBDE RtCDF.ABCDEF证明:AD是BAC的角平分线,DEAB,DFAC
4、,DE=DF,DEB=DFC=90.在RtBDE 和 RtCDF中,RtBDE RtCDF.EB=FC.BD=CD,B=C,DEB=DFC,角平分线性质定理的逆定理u角平分线性质定理的逆定理角的内部到角的两边的距离相等的点在角的平分线上.PAOBCDE应用所具备的条件:(1)位置关系:点在角的内部;(2)数量关系:该点到角两边的距离相等.定理的作用:判断点是否在角平分线上.u应用格式:PDOA,PEOB,PD=PE.点点P 在AOB的平分线上.例2 如图,要在S区建一个贸易市场,使它到铁路和公路距离相等,离公路与铁路交叉处500米,这个集贸市场应建在何处(比例尺为120000)?DCS解:作夹
5、角的角平分线OC,截取OD=2.5cm,D即为所求.O例3 已知:如图,ABC的角平分线BM,CN相交于点P,求证:点P到三边AB,BC,CA的距离相等.A B C P N M D E F A B C P N M 证明:过点P作PD,PE,PF分别垂直于AB,BC,CA,垂足分别为D,E,F.BM是ABC的角平分线,点P在BM上,PD=PE.同理PE=PF.PD=PE=PF.即点P到三边AB,BC,CA的距离相等.想一想:点P在A的平分线上吗?这说明三角形的三条角平分线有什么关系?点P在A的平分线上.这说明三角形的三条角平分线相交于一点,这一点到三角形三边的距离相等.结论:三角形的三条角平分线
6、交于一点,并且这点到三边的距离相等.用尺规作已知角的角平分线 如图,是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?ABC(E)D其依据是SSS,两全等三角形的对应角相等.ABMCO已知:AOB.求作:AOB的平分线.仔细观察步骤 作角平分线是最基本的尺规作图,大家一定要掌握噢!动手画一画作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点MN为圆心,大于 MN的长为半径画弧,两弧在AOB的内部相交于点C.(3)画射线OC.射线OC即为所求.122.AB
7、C中,C=90,AD平分CAB,且BC=8,BD=5,则点D到AB的距离是 .ABCD31.如图,DEAB,DFBG,垂足分别是E,F,DE=DF,EDB=60,则 EBF=度,BE=.60BFEBDFACG3.用尺规作图作一个已知角的平分线的示意图如图所示,则能说明AOC=BOC的依据是()A.SSS B.ASA C.AAS D.角平分线上的点到角两边的距离相等ABMCOA4.如图所示,已知ABC中,PEAB交BC于点E,PFAC交BC于点F,点P是AD上一点,且点D到PE的距离与到PF的距离相等,判断AD是否平分BAC,并说明理由解:AD平分BAC理由如下:D到PE的距离与到PF的距离相等
8、,点D在EPF的平分线上12又PEAB,13同理,2434,AD平分BACABCEFD(3412P 5.如图,已知ABC的外角CBD和BCE的平分线相交于点F,求证:点F在DAE的平分线上 证明:过点F作FGAE于G,FHAD于H,FMBC于M.点F在BCE的平分线上,FGAE,FMBC.FGFM.又点F在CBD的平分线上,FHAD,FMBC,FMFH,FGFH.点F在DAE的平分线上.GHMABCFED角的平分线性 质定 理一个点:角平分线上的点;二距离:点到角两边的距离;两相等:两条垂线段相等性质定理的逆定理内 容角的内部到角两边距离相等的点在这个角的平分线上作 用判断一个点是否在角的平分
9、线上辅助线添加过角平分线上一点向两边作垂线段已知:如图,CE平分ACD,1=B,AB与CE平行吗,为什么?如图,直线如图,直线AB,CD被直线被直线EF所截,所截,如如2=3,能得出,能得出ABCDABCD吗吗?一、合作交流,探索新知2=3(已知)3=1(对顶角相等)1=2 ABCD(同位角相等,两直线平行)B3ACDF12E两直线平行的判定两条直线被第三条直线所截,如果内错角相等,那么这两直线平行.B23ADEFC2=3(已知)ABCD(内错角相等,两直线平行)推理格式:简单地说内错角相等,两直线平行.做一做 如图,已知1121,2 120,3120.说出其中的平行线,并说明理由.123l2
10、l1l3l4如图,如果如图,如果3+4=180,那么那么ABCDABCD?思考 3+4=180(已知)2+4=180(邻补角的定义)3=2()ABCD()32AC1DBEF4同角的补角相等内错角相等,两直线平行1如图,直线AB、CD被直线EF所截(1)量得1=80,2=100,ABCD?根据什么?(2)量得3=100,4=100,ABCD?根据什么?二、尝试反馈,巩固练习2如图所示,由DCE=D,可判断哪两条直线平行?由1=2,可判断哪两条直线平行?二、尝试反馈,巩固练习BAD/BEAB/DC如图,如图,(1)从)从1=2,可以推出,可以推出 ,理由是理由是(2)从)从2=,可以推出,可以推出
11、c cd d,理由是理由是(3)如果)如果4=75,3=75 ,可以推出可以推出 (4)从从4=75,5=,可以推出可以推出a ab b.检测一下自己吧dba内错角相等,两直线平行同位角相等,两直线平行.33ab1254cdc105ABCDEF如图,如果要判定ABCD,只需要一个什么条件?要判断ABCD,图中可考虑的截线有几条?AD、AE、AC、CF、CB共5条,所以分类讨论1、有一块木板,怎样才能知道它上下边缘是否平行?四、应用拓展有一块木板,怎样才能知道它上下边缘是否平行?12四、应用拓展有一块木板,怎样才能知道它上下边缘是否平行?1212四、应用拓展两直线平行的判定两条直线被第三条直线所
12、截,如果同旁内角互补,那么这两直线平行.2BACDEF3推理格式:2+3=180(已知)ABCD(同旁内角互补,两直线平行)简单地说同旁内角互补,两直线平行1.同位角相等同位角相等,两直线平行两直线平行.2.内错角相等内错角相等,两直线平行两直线平行.3.同旁内角互补同旁内角互补,两直线平行两直线平行.4.在同一平面内,垂直于同一条直线的两直线平行在同一平面内,垂直于同一条直线的两直线平行5.平行线的定义平行线的定义.到目前为止我们学过的判定两条直线是否平行的方法有几种?有一块木板,怎样才能知道它上下边缘是否平行?12PABC 2、台球运动中,如果母球P击中桌边点A,经桌边反弹后 击中相邻的另一条桌边,再次反弹,那么母球P经过的路线BC与PA平行吗?请说明你判断的理由12343、你能用一张不规则的纸(比如,如所示的四边形的纸)折出两条平行的直线吗?与同伴进行交流,说说你的折法。通过这节课的学习,你有哪些收获?议一议1.同位角相等同位角相等,两直线平行两直线平行.2.内错角相等内错角相等,两直线平行两直线平行.3.同旁内角互补同旁内角互补,两直线平行两直线平行.4.在同一平面内,垂直于同一条直线的两直线平行在同一平面内,垂直于同一条直线的两直线平行5.平行线的定义平行线的定义.判定两条直线平行的方法有:五、小结