2023-2024学年山东省单县第一中学数学高二上期末监测试题含解析.doc

上传人(卖家):知识图书馆 文档编号:8117132 上传时间:2024-12-03 格式:DOC 页数:18 大小:1.21MB
下载 相关 举报
2023-2024学年山东省单县第一中学数学高二上期末监测试题含解析.doc_第1页
第1页 / 共18页
2023-2024学年山东省单县第一中学数学高二上期末监测试题含解析.doc_第2页
第2页 / 共18页
2023-2024学年山东省单县第一中学数学高二上期末监测试题含解析.doc_第3页
第3页 / 共18页
2023-2024学年山东省单县第一中学数学高二上期末监测试题含解析.doc_第4页
第4页 / 共18页
2023-2024学年山东省单县第一中学数学高二上期末监测试题含解析.doc_第5页
第5页 / 共18页
点击查看更多>>
资源描述

1、2023-2024学年山东省单县第一中学数学高二上期末监测试题注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知双曲线的焦距为,且双曲线的一条渐近线与直线平行,则双曲线的方程为()A.B.C.D.2已知圆,过点P的直线l被圆C所截,且截得最长弦的长度与最短弦的长度比值为54,若O为坐标原点,则最大值为()A.3B.

2、4C.5D.63若向量,则()A.B.C.D.419世纪法国著名数学家加斯帕尔蒙日,创立了画法几何学,推动了空间几何学的独立发展,提出了著名的蒙日圆定理:椭圆的两条切线互相垂直,则切线的交点位于一个与椭圆同心的圆上,称为蒙日圆,且该圆的半径等于椭圆长半轴长与短半轴长的平方和的算术平方根若圆与椭圆的蒙日圆有且仅有一个公共点,则b的值为( )A.B.C.D.5已知是定义在上的函数,且对任意都有,若函数的图象关于点对称,且,则()A.B.C.D.6已知实数,满足,则的最大值为()A.B.C.D.7如图,双曲线,是圆的一条直径,若双曲线过,两点,且离心率为,则直线的方程为()A.B.C.D.8已知函数

3、,则下列判断正确的是()A.直线与曲线相切B.函数只有极大值,无极小值C.若与互为相反数,则的极值与的极值互为相反数D.若与互为倒数,则的极值与的极值互为倒数9将函数图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,再将所得图象向右平移个单位长度,得到函数的图象,则()A.B.C.D.10为推动党史学习教育各项工作扎实开展,营造“学党史、悟思想、办实事、开新局”的浓厚氛围,某校党委计划将中心组学习、专题报告会、党员活动日、主题班会、主题团日这五种活动分5个阶段安排,以推动党史学习教育工作的进行,若主题班会、主题团日这两个阶段相邻,且中心组学习必须安排在前两阶段并与党员活动日不相邻,则不同的安排

4、方案共有()A.10种B.12种C.16种D.24种11若数列是等比数列,且,则()A.1B.2C.4D.812公元前6世纪,古希腊的毕达哥拉斯学派研究发现了黄金分割,简称黄金数离心率等于黄金数的倒数的双曲线称为黄金双曲线若双曲线是黄金双曲线,则()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13数列满足,则_.14已知直线与圆交于,两点,则的最小值为_.15数学中有许多形状优美、寓意美好的曲线,曲线就是其中之一(如图),给出下列三个结论:曲线C恰好经过6个整点(即横、纵坐标均为整数的点);曲线C上任意一点到原点的距离都不超过;曲线C所围成的“心形”区域的面积小于3;其中,

5、所有正确结论的序号是_16设椭圆,点在椭圆上,求该椭圆在P处的切线方程_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知圆C经过点,且它的圆心C在直线上.(1)求圆C的方程;(2)过点作圆C的两条切线,切点分别为M,N,求三角形PMN的面积.18(12分)已知函数,其中,.(1)当时,求曲线在点处切线方程;(2)求函数的单调区间.19(12分)某市对新形势下的中考改革工作进行了全面的部署安排.中考录取科目设置分为固定赋分科目和非固定赋分科目,固定赋分科目(语文、数学、英语、物理、体育与健康)按卷面分计算;非固定赋分科目(化学、生物、道德与法治、历史、地理)按学

6、生在该学科中的排名进行等级赋分,即根据改革方案,将每门等级考试科目中考生的原始成绩从高到低分为A,共个等级.参照正态分布原则,确定各等级人数所占比例分别为,.等级考试科目成绩计入考生总成绩时,将A至等级内的考生原始成绩,依照等比例转换法则,分别转换到,八个分数区间,得到考生的等级成绩.该市学生的中考化学原始成绩制成频率分布直方图如图所示:(1)求图中的值;(2)估计该市学生中考化学原始成绩不少于多少分才能达到等级及以上(含等级)?(3)由于中考改革后学生各科原始成绩不再返回学校,只告知各校参考学生的各科平均成绩及方差.已知某校初三共有名学生参加中考,为了估计该校学生的化学原始成绩达到等级及以上

7、(含等级)的人数,将该校学生的化学原始成绩看作服从正态分布,并用这名学生的化学平均成绩作为的估计值,用这名学生化学成绩的方差作为的估计值,计算人数(结果保留整数)附:,.20(12分)自我国爆发新冠肺炎疫情以来,各地医疗单位都加紧了医疗用品的生产某医疗器械厂统计了口罩生产车间每名工人的生产速度,并将所得数据分成五组并绘制出如图所示的频率分布直方图已知前四组的频率成等差数列,第五组与第二组的频率相等(1)估计口罩生产车间工人生产速度的中位数(结果写成分数的形式);(2)为了解该车间工人的生产速度是否与他们的工作经验有关,现从车间所有工人中随机抽样调查了5名工人的生产速度以及他们的工龄(参加工作的

8、年限),数据如下表:工龄x(单位:年)4681012生产速度y(单位:件/小时)4257626267根据上述数据求每名工人的生产速度y关于他的工龄x的回归方程,并据此估计该车间某位有16年工龄的工人的生产速度附:回归方程中斜率和截距的最小二乘估计公式为:,21(12分)设数列的前项和为,已知,且(1)证明:;(2)求22(10分)已知抛物线,过焦点的直线l交抛物线C于M、N两点,且线段中点的纵坐标为2(1)求直线l的方程;(2)设x轴上关于y轴对称的两点P、Q,(其中P在Q的右侧),过P的任意一条直线交抛物线C于A、B两点,求证:始终被x轴平分参考答案一、选择题:本题共12小题,每小题5分,共

9、60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据焦点在x轴上的双曲线渐近线斜率为可求a,b关系,再结合a,b,c关系即可求解【详解】双曲线1(a0,b0)的焦距为2,且双曲线的一条渐近线与直线2xy0平行,b2a,c2a2b2,a1,b2,双曲线的方程为故选:B2、C【解析】由题意,点P在圆C内,且最长弦的长度为直径长10,则最短弦的长度为8,进而可得,所以点P的轨迹为以C为圆心,半径为3的圆,从而即可求解.【详解】解:由题意,圆,所以圆C是以为圆心,半径为5的圆,因为过点P的直线l被圆C所截,且截得最长弦的长度与最短弦的长度比值为54,所以点P在圆C内,且最长弦

10、的长度为直径长10,则最短弦的长度为8,所以由弦长公式有,所以点P的轨迹为以C为圆心,半径为3的圆,所以,故选:C.3、D【解析】由向量数量积的坐标运算求得数量积,模,结合向量的共线定义判断【详解】由已知,与不垂直,若,则,但是,因此与不共线故选:D4、B【解析】由题意求出蒙日圆方程,再由两圆只有一个交点可知两圆相切,从而列方程可求出b的值【详解】由题意可得椭圆的蒙日圆的半径,所以蒙日圆方程为,因为圆与椭圆的蒙日圆有且仅有一个公共点,所以两圆相切,所以,解得,故选:B5、D【解析】令,代入可得,即得,再由函数的图象关于点对称,判断得函数的图象关于点对称,即,则化简可得,即函数的周期为,从而代入

11、求解.【详解】令,得,即,所以,因为函数的图象关于点对称,所以函数的图象关于点对称,即,所以,即,可得,则,故选:D.第II卷(非选择题6、A【解析】画出不等式组所表示的平面区域,利用直线的斜率公式模型进行求解即可.【详解】不等式组表示的平面区域如下图所示:,代数式表示不等式组所表示的平面区域内的点与点连线的斜率,由图象可知:直线的斜率最大,由,即,即的最大值为:,因此的最大值为,故选:A7、D【解析】由离心率求得,设出两点坐标代入双曲线方程相减求得直线斜率与的关系得结论【详解】由题意,则,即,由圆方程知,设,则,又,两式相减得,所以,直线方程为,即故选:D8、C【解析】求出函数的导函数,通过

12、在某点处的导数为该点处切线的斜率,求出切线方程,并且判断出极值,通过结合与互为相反数,若与互为倒数,分别判断的极值与的极值是否互为相反数,以及是否互为倒数.【详解】,令,得,所以,因为,所以曲线在点处的切线方程为,故A错;当时,存在使,且当时,;当时,即有极小值,无极大值,故B错误;设为的极值点,则,且,所以,当时,;当时,故C正确,D错误.9、A【解析】根据三角函数图象的变换,由逆向变换即可求解.【详解】由已知的函数逆向变换,第一步,向左平移个单位长度,得到的图象;第二步,图象上所有点的横坐标缩短到原来的,纵坐标不变,得到的图象,即的图象.故.故选:A10、A【解析】对中心组学习所在的阶段分

13、两种情况讨论得解.【详解】解:如果中心组学习在第一阶段,主题班会、主题团日在第二、三阶段,则其它活动有2种方法;主题班会、主题团日在第三、四阶段,则其它活动有1种方法;主题班会、主题团日在第四、五阶段,则其它活动有1种方法,则此时共有种方法;如果中心组学习在第二阶段,则第一阶段只有1种方法,后面的三个阶段有种方法.综合得不同的安排方案共有10种.故选:A11、C【解析】根据等比数列的性质,由题中条件,求出,即可得出结果.【详解】因为数列是等比数列,由,得,所以,因此.故选:C.12、A【解析】根据黄金双曲线的定义直接列方程求解【详解】双曲线中的,所以离心率,因为双曲线是黄金双曲线,所以,两边平

14、方得,解得或(舍去),故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题中所给的递推式得到数列具有周期性,进而得到结果.【详解】根据题中递推式知,可知数列具有周期性,周期为3,因为故故答案为:14、【解析】先求出直线经过的定点,再求出圆心到定点的距离,数形结合即得解.【详解】由题得,所以直线经过定点,圆的圆心为,半径为.圆心到定点的距离为,当时,取得最小值,且最小值为.故答案为:815、【解析】先根据图像的对称性找出整点,再判断是否还有其他的整点在曲线上;找出曲线上离原点距离最大的点的区域,再由基本不等式得到最大值不超过;在心形区域内找到一个内接多边形,该多边形的面积

15、等于3,从而判断出“心形”区域的面积大于3.【详解】:由于曲线,当时,;当时,;当时,;由于图形的对称性可知,没有其他的整点在曲线上,故曲线恰好经过6个整点:,所以正确;:由图知,到原点距离的最大值是在时,由基本不等式,当时,所以即,所以正确;:由知长方形CDFE的面积为2,三角形BCE的面积为1,所以曲线C所围成的“心形”区域的面积大于3,故错误;故答案为:.【点睛】找准图形的关键信息,比如对称性,整点,内接多边形是解决本题的关键.16、【解析】由题意可知切线的斜率存在,所以设切线方程为,代入椭圆方程中整理化简,令判别式等于零,可求出的值,从而可求得切线方程【详解】由题意可知切线的斜率存在,

16、所以设切线方程为,将代入中得,化简整理得,令,化简整理得,即,解得,所以切线方程为,即,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1); (2).【解析】(1)由题设知,设圆心,应用两点距离公式列方程求参数a,进而确定圆心坐标、半径,写出圆C的方程;(2)利用两点距离公式、切线的性质可得、,再应用三角形面积公式求三角形PMN的面积.【小问1详解】由已知,可设圆心,且,从而有,解得.所以圆心,半径.所以,圆C的方程为.【小问2详解】连接PC,CM,CN,MN,由(1)知:圆心,半径.所以.又PM,PN是圆C的切线,所以,则,所以,所以.18、(1);(2)答

17、案见解析.【解析】(1)当时,求出函数的导函数,再求出,再利用点斜式求出切线方程;(2)首先求出函数的导函数,再对参数分类讨论,求出函数的单调区间;【详解】解:(1)当时,所以,所以,所以切线方程为:,即:(2)函数定义域为,因为,当时,在上恒成立,所以函数的单调递增区间为,无单调递减区间;当时,由得,由得,所以函数的单调递增区间为,单调递减区间为【点睛】本题考查导数的几何意义,利用导数研究含参函数的单调区间,属于基础题.19、(1)(2)85(3)23【解析】(1)根据所有矩形面积之和等于1可得;(2)先根据矩形面积之和判断达到等级的最低分数为x所在区间,然后根据矩形面积之和等于0.9可得;

18、(3)由题知,所以由可得.【小问1详解】由得【小问2详解】由题意可知,要使等级达到等级及以上,则成绩需超过的学生.因为,记达到等级的最低分数为x,则,则由,解得所以该市学生中考化学原始成绩不少于85分才能达到等级及以上.【小问3详解】由题知,因为所以故该校学生的化学原始成绩达到等级及以上的人数大约为人.20、(1)(2)80件/小时【解析】(1)先利用等差数列的通项公式和频率分布直方图各矩形的面积之和为1求出各组频率,再利用频率分布直方图求中位数;(2)先求出、,利用最小二乘法求出回归直线方程,再进行预测其生产速度.【小问1详解】解:设前4组的频率分别为,公差为,由频率分布直方图,得,即,解得

19、,则,所以中位数为.【小问2详解】解:由题意,得,由所给公式,得,所以回归直线方程为,则当时,即估计该车间某位有16年工龄的工人的生产速度为80件/小时.21、(1)证明见解析;(2)【解析】(1)当时,由题可得,两式子相减可得,即,然后验证当n=1时,命题成立即可; (2)通过求解数列的奇数项与偶数项的和即可得到其对应前n项和的通项公式.【详解】(1)由条件,对任意,有,因而对任意,有,两式相减,得,即,又,所以,故对一切,(2)由(1)知,所以,于是数列是首项,公比为3的等比数列,数列是首项,公比为3的等比数列,所以,于是从而,综上所述,.【点睛】已知数列an的前n项和Sn,求数列的通项公

20、式,其求解过程分为三步:(1)先利用a1S1求出a1;(2)用n1替换Sn中的n得到一个新的关系,利用anSnSn1(n2)便可求出当n2时an的表达式;(3)对n1时的结果进行检验,看是否符合n2时an的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n1与n2两段来写数列求和的常用方法有倒序相加法,错位相减法,裂项相消法,分组求和法,并项求和法等,可根据通项特点进行选用.22、(1);(2)证明见解析.【解析】(1)设直线l的方程为:,联立方程,利用韦达定理可得结果;(2)设,借助韦达定理表示,即可得到结果.【详解】(1)由已知可设直线l的方程为:,联立方程组可得,设,则又因为,得,故直线l的方程为:即为;(2)由题意可设,可设过P的直线为联立方程组可得,显然设,则所以所以始终被x轴平分

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 考试试卷
版权提示 | 免责声明

1,本文(2023-2024学年山东省单县第一中学数学高二上期末监测试题含解析.doc)为本站会员(知识图书馆)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|