1、2024届甘肃省陇南市达标名校中考四模数学试题请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如果将直线l1:y2x2平移后得到直线l2:y2x,那么下列平移过程正确的是()A将l1向左平移2个单位B将l1向右平移2个单位C将l1向上平移2个单位D将l1向下平移2个单位2如图,A点是半圆上一个三等分点,B点是弧AN的中点
2、,P点是直径MN上一动点,O的半径为1,则APBP的最小值为A1BCD3化简的结果是()ABCD4如图,矩形纸片中,将沿折叠,使点落在点处,交于点,则的长等于( )ABCD5已知直线y=ax+b(a0)经过第一,二,四象限,那么直线y=bx-a一定不经过( )A第一象限B第二象限C第三象限D第四象限6某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm2323.52424.525销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A24.5,24.5B24.5,24C24,24D23.5,2472017年新设了雄安新区,周边
3、经济受到刺激综合实力大幅跃升,其中某地区生产总值预计可增长到305.5亿元其中305.5亿用科学记数法表示为( )A305.5104 B3.055102 C3.0551010 D3.05510118如图,A、B、C是O上的三点,BAC30,则BOC的大小是()A30B60C90D459如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是()A黑(3,3),白(3,1)B黑(3,1),白(3,3)C黑(1,5),白(5,5)D黑(3,2),白(3,3)10如图,已知在RtABC中,ABC=90,点D是BC边的中
4、点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:EDBC;A=EBA;EB平分AED;ED=AB中,一定正确的是( )ABCD11在实数0,4中,最小的数是( )A0BCD412如图,正方形ABCD中,AB=6,G是BC的中点将ABG沿AG对折至AFG,延长GF交DC于点E,则DE的长是 ( )A1B1.5C2D2.5二、填空题:(本大题共6个小题,每小题4分,共24分)13分解因式:= 14方程的解是_15如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60方向上,继续向东航行10海里到达点B处,
5、测得小岛C在轮船的北偏东15方向上,此时轮船与小岛C的距离为_海里.(结果保留根号)16已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2_S乙2(填“”、“=”、“”)17如图,扇形OAB的圆心角为30,半径为1,将它沿箭头方向无滑动滚动到OAB的位置时,则点O到点O所经过的路径长为_18不等式组的最小整数解是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图所示,点C在线段AB上,AC = 8 cm,CB = 6 cm,点M、N分别是AC、BC的中点.求线段MN的长.若C为线段AB上任意一点,满足AC+CB=
6、a(cm),其他条件不变,你能猜想出MN的长度吗?并说明理由.若C在线段AB的延长线上,且满足AC-CB=b(cm),M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明理由.20(6分)如图,在平面直角坐标系中,OAOB,ABx轴于点C,点A(,1)在反比例函数y的图象上(1)求反比例函数y的表达式;(2)在x轴上是否存在一点P,使得SAOPSAOB,若存在,求所有符合条件点P的坐标;若不存在,简述你的理由21(6分)两家超市同时采取通过摇奖返现金搞促销活动,凡在超市购物满100元的顾客均可以参加摇奖一次小明和小华对两家超市摇奖的50名顾客获奖情况进行了统计
7、并制成了图表(如图)奖金金额获奖人数20元15元10元5元商家甲超市5101520乙超市232025(1)在甲超市摇奖的顾客获得奖金金额的中位数是 ,在乙超市摇奖的顾客获得奖金金额的众数是 ;(2)请你补全统计图1;(3)请你分别求出在甲、乙两超市参加摇奖的50名顾客平均获奖多少元?(4)图2是甲超市的摇奖转盘,黄区20元、红区15元、蓝区10元、白区5元,如果你购物消费了100元后,参加一次摇奖,那么你获得奖金10元的概率是多少?22(8分)小明遇到这样一个问题:已知:. 求证:.经过思考,小明的证明过程如下:,.接下来,小明想:若把带入一元二次方程(a0),恰好得到.这说明一元二次方程有根
8、,且一个根是.所以,根据一元二次方程根的判别式的知识易证:.根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目:已知:. 求证:.请你参考上面的方法,写出小明所编题目的证明过程.23(8分)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角,求树高AB(结果保留根号).24(10分)如图,四边形ABCD内接于O,对角线AC为O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF求CDE的度数;求证:DF是O的切线;若AC=DE,求tanABD
9、的值25(10分)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x 的函数关系图象(1)求y与x的函数关系式;(2)直接写出自变量x的取值范围26(12分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字1,1,2;乙袋中的小球上分别标有数字1,2,1现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y
10、)请你用画树状图或列表的方法,写出点M所有可能的坐标;求点M(x,y)在函数y=的图象上的概率27(12分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(6,n),与x轴交于点C(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b的x的取值范围;(3)若点P在x轴上,且SACP=,求点P的坐标参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据“上加下减”的原则求解即可【详解】将函数y2x2的图象向上平移2个单位长度,所得图象对应的函数
11、解析式是y2x故选:C【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键2、C【解析】作点A关于MN的对称点A,连接AB,交MN于点P,则PA+PB最小,连接OA,AA.点A与A关于MN对称,点A是半圆上的一个三等分点,AON=AON=60,PA=PA,点B是弧AN的中点,BON=30 ,AOB=AON+BON=90,又OA=OA=1,AB=PA+PB=PA+PB=AB=故选:C.3、D【解析】将除法变为乘法,化简二次根式,再用乘法分配律展开计算即可.【详解】原式=(+1)=2+.故选D.【点睛】本题主要考查二次根式的加减乘除混合运算,掌握二次根式的混合运算法
12、则是解题关键.4、B【解析】由折叠的性质得到AE=AB,E=B=90,易证RtAEFRtCDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6-x,在RtCDF中利用勾股定理得到关于x的方程x2=42+(6-x)2,解方程求出x即可【详解】矩形ABCD沿对角线AC对折,使ABC落在ACE的位置,AE=AB,E=B=90,又四边形ABCD为矩形,AB=CD,AE=DC,而AFE=DFC,在AEF与CDF中, ,AEFCDF(AAS),EF=DF;四边形ABCD为矩形,AD=BC=6,CD=AB=4,RtAEFRtCDF,FC=FA,设FA=x,则FC=x,FD=6-x,
13、在RtCDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x,则FD6-x=.故选B【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等也考查了矩形的性质和三角形全等的判定与性质以及勾股定理5、D【解析】根据直线y=ax+b(a0)经过第一,二,四象限,可以判断a、b的正负,从而可以判断直线y=bx-a经过哪几个象限,不经过哪个象限,本题得以解决【详解】直线y=ax+b(a0)经过第一,二,四象限,a0,b0,直线y=bx-a经过第一、二、三象限,不经过第四象限,故选D【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答6、A【解析】
14、【分析】根据众数和中位数的定义进行求解即可得【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,故选A【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.7、C【解析】解:305.5亿=3.0551故选C8、B【解析】【分析】欲求BOC,又已知一圆周角BAC,可利用圆周角与圆心角的关系求解【详解】BAC=30,BOC=2BAC =60(同弧所对的圆周角是圆心角的一半),故选B【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条
15、弧所对的圆心角的一半9、A【解析】首先根据各选项棋子的位置,进而结合轴对称图形和中心对称图形的性质判断得出即可【详解】解:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形,也是中心对称图形,故此选项正确;B、当摆放黑(3,1),白(3,3)时,此时是轴对称图形,不是中心对称图形,故此选项错误;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误故选:A【点睛】此题主要考查了坐标确定位置以及轴对称图形与中心对称图形的性质,利用已知确定各点位置是解题关键10、B【解
16、析】解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:根据作图过程可知:PB=CP,D为BC的中点,PD垂直平分BC,EDBC正确.ABC=90,PDAB.E为AC的中点,EC=EA,EB=EC.A=EBA正确;EB平分AED错误;ED=AB正确.正确的有.故选B考点:线段垂直平分线的性质.11、D【解析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解【详解】正数大于0和一切负数,只需比较-和-1的大小,|-|-1|,最小的数是-1故选D【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的
17、大小12、C【解析】连接AE,根据翻折变换的性质和正方形的性质可证RtAFERtADE,在直角ECG中,根据勾股定理求出DE的长.【详解】连接AE,AB=AD=AF,D=AFE=90,由折叠的性质得:RtABGRtAFG,在AFE和ADE中,AE=AE,AD=AF,D=AFE,RtAFERtADE,EF=DE,设DE=FE=x,则CG=3,EC=6x.在直角ECG中,根据勾股定理,得:(6x)2+9=(x+3)2,解得x=2.则DE=2.【点睛】熟练掌握翻折变换、正方形的性质、全等三角形的判定与性质是本题的解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、a(a+2)(a-
18、2)【解析】14、1【解析】,x=1,代入最简公分母,x=1是方程的解.15、5 【解析】如图,作BHAC于H在RtABH中,求出BH,再在RtBCH中,利用等腰直角三角形的性质求出BC即可【详解】如图,作BHAC于H在RtABH中,AB=10海里,BAH=30,ABH=60,BH=AB=5(海里),在RtBCH中,CBH=C=45,BH=5(海里),BH=CH=5海里,CB=5(海里)故答案为:5【点睛】本题考查了解直角三角形的应用-方向角问题,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题16、【解析】要比较甲、乙方差的大小,就需要求出甲、乙的方差;首先根据折线统计图结合根据平均数
19、的计算公式求出这两组数据的平均数;接下来根据方差的公式求出甲、乙两个样本的方差,然后比较即可解答题目.【详解】甲组的平均数为:=4,S甲2=(3-4)2+(6-4)2+(2-4)2+(6-4)2+(4-4)2+(3-4)2=,乙组的平均数为: =4,S乙2=(4-4)2+(3-4)2+(5-4)2+(3-4)2+(4-4)2+(5-4)2=,S甲2S乙2.故答案为:.【点睛】本题考查的知识点是方差,算术平均数,折线统计图,解题的关键是熟练的掌握方差,算术平均数,折线统计图.17、【解析】点O到点O所经过的路径长分三段,先以A为圆心,1为半径,圆心角为90度的弧长,再平移了AB弧的长,最后以B为
20、圆心,1为半径,圆心角为90度的弧长根据弧长公式计算即可【详解】解:扇形OAB的圆心角为30,半径为1,AB弧长=点O到点O所经过的路径长=故答案为:【点睛】本题考查了弧长公式:也考查了旋转的性质和圆的性质18、-1【解析】分析:先求出每个不等式的解集,再求出不等式组的解集,即可得出答案详解: .解不等式得:x-3,解不等式得:x1,不等式组的解集为-3x1,不等式组的最小整数解是-1,故答案为:-1点睛:本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)
21、7cm(2)若C为线段AB上任意一点,且满足AC+CB=a(cm),其他条件不变,则MN=a(cm);理由详见解析(3)b(cm)【解析】(1)据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN即可求出MN的长度即可(2)据题意画出图形即可得出答案(3)据题意画出图形即可得出答案【详解】(1)如图AC8cm,CB6cm,ABACCB8614cm,又点M、N分别是AC、BC的中点,MCAC,CNBC,MNACBC( ACBC)AB7cm答:MN的长为7cm(2)若C为线段AB上任一点,满足ACCBacm,其它条件不变,则MNcm,理由是:点M、N分别是AC、BC
22、的中点,MCAC,CNBC,ACCBacm,MNACBC(ACBC)cm(3)解:如图,点M、N分别是AC、BC的中点,MCAC,CNBC,ACCBbcm,MNACBC(ACBC)cm考点:两点间的距离20、(1)y;(1)(1,0)或(1,0)【解析】(1)把A的坐标代入反比例函数的表达式,即可求出答案;(1)求出A60,B30,求出线段OA和OB,求出AOB的面积,根据已知SAOPSAOB,求出OP长,即可求出答案【详解】(1)把A(,1)代入反比例函数y得:k1,所以反比例函数的表达式为y;(1)A(,1),OAAB,ABx轴于C,OC,AC1,OA1tanA,A60OAOB,AOB90
23、,B30,OB1OC1,SAOBOAOB11SAOPSAOB,OPACAC1,OP1,点P的坐标为(1,0)或(1,0)【点睛】本题考查了用待定系数法求反比例函数的解析式,三角形的面积,解直角三角形等知识点,求出反比例函数的解析式和求出AOB的面积是解答此题的关键21、(1)10,5元;(2)补图见解析;(3)在甲、乙两超市参加摇奖的50名顾客平均获奖分别为10元、8.2元;(4).【解析】(1)根据中位数、众数的定义解答即可;(2)根据表格中的数据补全统计图即可;(3)根据计算平均数的公式求解即可;(4)根据扇形统计图,结合概率公式求解即可.【详解】(1)在甲超市摇奖的顾客获得奖金金额的中位
24、数是=10元,在乙超市摇奖的顾客获得奖金金额的众数5元,故答案为:10元、5元;(2)补全图形如下:(3)在甲超市平均获奖为=10(元),在乙超市平均获奖为=8.2(元);(4)获得奖金10元的概率是=【点睛】本题考查了中位数及众数的定义、平均数的计算公式及简单概率的求法,熟知这些知识点是解决本题的关键.22、证明见解析【解析】解:,.是一元二次方程的根. ,.23、6+【解析】如下图,过点C作CFAB于点F,设AB长为x,则易得AF=x-4,在RtACF中利用的正切函数可由AF把CF表达出来,在RtABE中,利用的正切函数可由AB把BE表达出来,这样结合BD=CF,DE=BD-BE即可列出关
25、于x的方程,解方程求得x的值即可得到AB的长.【详解】解:如图,过点C作CFAB,垂足为F, 设AB=x,则AF=x-4,在RtACF中,tan=,CF=BD ,同理,RtABE中,BE=,BD-BE=DE,-=3,解得x=6+.答:树高AB为(6+)米 .【点睛】作出如图所示的辅助线,利用三角函数把CF和BE分别用含x的式子表达出来是解答本题的关键.24、(1)90;(1)证明见解析;(3)1【解析】(1)根据圆周角定理即可得CDE的度数;(1)连接DO,根据直角三角形的性质和等腰三角形的性质易证ODF=ODC+FDC=OCD+DCF=90,即可判定DF是O的切线;(3)根据已知条件易证CD
26、EADC,利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tanABD的值即可【详解】解:(1)解:对角线AC为O的直径,ADC=90,EDC=90;(1)证明:连接DO,EDC=90,F是EC的中点,DF=FC,FDC=FCD,OD=OC,OCD=ODC,OCF=90,ODF=ODC+FDC=OCD+DCF=90,DF是O的切线;(3)解:如图所示:可得ABD=ACD,E+DCE=90,DCA+DCE=90,DCA=E,又ADC=CDE=90,CDEADC,DC1=ADDEAC=1DE,设DE=x,则AC=1x,则AC1AD1=ADDE,期(1x)1AD1=ADx,
27、整理得:AD1+ADx10x1=0,解得:AD=4x或4.5x(负数舍去),则DC=,故tanABD=tanACD=25、(1)y=-2x+31,(2)20x1【解析】试题分析:(1)根据函数图象经过点(20,300)和点(30,280),利用待定系数法即可求出y与x的函数关系式;(2)根据试销期间销售单价不低于成本单价,也不高于每千克1元,结合草莓的成本价即可得出x的取值范围试题解析:(1)设y与x的函数关系式为y=kx+b,根据题意,得: 解得: y与x的函数解析式为y=-2x+31,(2) 试销期间销售单价不低于成本单价,也不高于每千克1元,且草莓的成本为每千克20元,自变量x的取值范围
28、是20x126、(1)树状图见解析,则点M所有可能的坐标为:(1,1),(1,2),(1,1),(1,1),(1,2),(1,1),(2,1),(2,2),(2,1);(2).【解析】试题分析:(1)画出树状图,可求得所有等可能的结果;(2)由点M(x,y)在函数y=的图象上的有:(1,2),(2,1),直接利用概率公式求解即可求得答案试题解析:(1)树状图如下图:则点M所有可能的坐标为:(1,1),(1,2),(1,1),(1,1),(1,2),(1,1),(2,1),(2,2),(2,1);(2)点M(x,y)在函数y=的图象上的有:(1,2),(2,1),点M(x,y)在函数y=的图象上
29、的概率为:考点:列表法或树状图法求概率.27、(1);(1)-6x0或1x;(3)(-1,0)或(-6,0)【解析】(1)利用反比例函数图象上点的坐标特征可求出点A、B的坐标,再利用待定系数法即可求出直线AB的解析式;(1)根据函数图像判断即可;(3)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合SACP=SBOC,即可得出|x+4|=1,解之即可得出结论【详解】(1)点A(m,3),B(-6,n)在双曲线y=上,m=1,n=-1,A(1,3),B(-6,-1)将(1,3),B(-6,-1)带入y=kx+b, 得:,解得,直线的解析式为y=x
30、+1(1)由函数图像可知,当kx+b时,-6x0或1x;(3)当y=x+1=0时,x=-4,点C(-4,0)设点P的坐标为(x,0),如图,SACP=SBOC,A(1,3),B(-6,-1),3|x-(-4)|=|0-(-4)|-1|,即|x+4|=1,解得:x1=-6,x1=-1点P的坐标为(-6,0)或(-1,0)【点睛】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出直线AB的解析式;(1)根据函数图像判断不等式取值范围;(3)根据三角形的面积公式以及SACP=SBOC,得出|x+4|=1