人教版六年级上学期数学第五单元优质教案(含单元备课).doc

上传人(卖家):微草 文档编号:812889 上传时间:2020-10-27 格式:DOC 页数:45 大小:551.50KB
下载 相关 举报
人教版六年级上学期数学第五单元优质教案(含单元备课).doc_第1页
第1页 / 共45页
人教版六年级上学期数学第五单元优质教案(含单元备课).doc_第2页
第2页 / 共45页
人教版六年级上学期数学第五单元优质教案(含单元备课).doc_第3页
第3页 / 共45页
人教版六年级上学期数学第五单元优质教案(含单元备课).doc_第4页
第4页 / 共45页
亲,该文档总共45页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、五 圆 新知识点 教学要求 1.联系生活实际,引导学生通过观察实物、模型,操作学具和画圆等实践活动,经历从实物 抽象到图形,再到认识圆的各部分名称的过程,使学生认识圆的特征。 2.通过组织学生观察和操作等活动,经历“猜想验证归纳”的过程,认识圆周率;启发 学生利用已有的知识和经验,在掌握圆的周长和面积计算公式的过程中,发展初步的空间观 念并能正确、灵活地应用计算公式解决简单的实际问题。 3.在教学活动中,使学生感受探究问题的乐趣,增强应用意识;通过介绍圆周率等数学史 料,受到爱国主义的教育。 教学建议 1.使学生在操作中加深对圆的认识。 圆是最常见的图形之一,它是最简单的曲线图形之一。学生已经

2、对圆有了初步的感性认 识,教学时,可以出示一组图(5 个正多边形和 1 个圆),引导学生观察、思考圆和我们以前学过 的平面图形长方形、正方形、三角形等有什么不同。使学生在分类的过程中,体会到圆 是由封闭的曲线围成的平面图形。当正多边形的边数越来越多时,这个正多边形就会越来越 接近圆,这部分内容的教学过程要做到不拖沓,点到为止。关于画圆,可以分三个层次,第一个 层次,让学生借助一些圆形实物画圆,这样画圆有两个目的:其一,从用眼看,用嘴说,到动手画, 让学生逐步感知圆的特点;其二,为进一步认识圆心创造研究材料。 第二个层次,为学生认识圆 的半径、直径创造研究材料。第三个层次是用圆规画圆,体会圆心与

3、圆的位置之间的关系,半 径与圆的大小之间的关系等。在学生操作时,老师要给学生指出操作的目的是什么,把动手与 动脑结合起来。 2.该推理时要推理,不要一味地从操作学具做起。 教学“认识圆”,离不开学生的实践活动,让学生在“画一画” “折一折” “练一练”等活 动中认识圆的特征及各部分的名称。但这并不是说,学生的所有认识都要从动手开始,该推理 时就要推理,让学生充分利用所学知识,建立起知识之间的联系,如对“同一个圆中,直径的长 度是半径的 2 倍”的认识。 3.注意数学思想与方法的综合应用。 本单元蕴含的数学思想和方法主要有:化曲为直的思想方法、极限的思想方法、转化的 思想方法、对应的思想方法、等

4、积变形的思想方法;归纳的思想方法及猜想与实验验证等。 教学过程中要灵活运用这些数学思想和方法,得出最佳方案。 课时安排 1 认识圆.2 课时 2 圆的周长.2 课时 3 圆的面积.3 课时 4 认识扇形.1 课时 整理和复习1 课时 确定起跑线1 课时 1 认识圆 第一课时 教学内容 认识圆 教材第 57、第 58 页的内容及练习十四的第 15 题。 教学要求 1.通过动手操作、观察、思考等教学活动,认识圆并掌握圆的特征。 2.让学生理解在同一圆内直径与半径的关系,学会用圆规画圆。 3.初步渗透化曲为直的数学方法和极限的数学思想。 重点难点 重点:直观地认识圆的特征,学会用圆规画圆。 难点:明

5、确圆心与圆的位置之间的关系,半径与圆的大小的关系。 教具学具 课件,实物投影,一些较硬的纸片,圆规。 教学过程 一 导入 1.出示一组平面图形(5 个正多边形和一个圆)。 提问:观察下面的图形,你能把它们分类吗? 2.圆与正多边形的关系。 提问:你是以什么为标准进行分类的? (学生可能以边的数量为分类标准) 提问:让我们想象一下,当正多边形的边数越来越多时,它就会越来越接近什么图形? (学生回答后,用电脑验证) 二 教学实施 1.介绍“神奇的圆” 。 老师可以查阅一些资料。例如:圆是一种看来简单实际上却很神奇的图形。古代人最早 是从太阳,阴历十五的月亮得到圆的概念。约一万八千年前的山顶洞人在兽

6、牙上打的孔是圆 的,他们还发现圆圆的木头可以滚动,搬动重物时可以省力;大约六千年前,美索不达米亚人制 成了第一个轮子;大约四千年前,人们发明了车子。古埃及人认为圆是神赐予的。我国古代伟 大的思想家墨子在描述圆时说到“一中同长也”,也就是说圆有一个圆心,圆心到圆周的长都 相等。 2.初步感知圆。 老师:圆是如此的神奇,你能想办法在纸上画一个圆吗? 学生借助圆形的实物,画圆并剪下来。 组织交流:画圆与画用线段围成的图形有什么不同? 学生自由发言,初步体会圆的特征由曲线围成的图形。 3.认识圆各部分的名称、特征。 (1)认识圆心。 让学生拿出剪下的圆形纸片,对折、 打开,换个方向再对折、 打开,反复

7、几次, 你发现了什么? 引出圆心,让学生在圆形纸片上画出圆心,并用字母 O 表示出来。 板书:圆心 O (2)认识直径。 请同学们用直尺量一量刚才折的每一条折痕的长度,你又发现了什么? 提问:谁能说一说直径是一条什么样的线段?在纸片上画出一条直径,并用字母 d 标出。 板书:通过圆心,并且两端都在圆上的线段叫做直径,一般用字母 d 表示。 (3)认识半径。 再请同学用直尺量一量从圆心到圆上任意一点的距离,你还能发现什么? 老师板书半径的定义。 老师:通过以上学习,我们已经初步认识了圆心、半径和直径。请同学们看教材,加深对这 三个概念的理解。 4.半径与直径的关系。 出示问题: (1)在同一个圆

8、里,能画出多少条半径和直径?(无数条) (2)在同一个圆里,所有半径的长度都相等吗?直径呢?(相等) (3)在同一个圆里,半径和直径有什么关系? 5.用圆规画圆。 老师:人们从实践中知道了同一个圆内所有的半径都相等这个特点后,才发明了圆规,并 用来画圆。我国大约在两千年前,就能画出地地道道的圆来了。 学生自学用圆规画圆的方法,并尝试画圆。 概括用圆规画圆的方法: (1)先点个点儿,确定圆心。 (2)张开圆规两脚,针尖对准圆心。 (3)旋转一周,标出圆心、半径及直径。 老师说明并示范用圆规画圆的方法,总结画圆时的两个不动。 (1)有针尖的一端不动(圆心不动)。 (2)圆规的两脚不动(半径不变)。

9、 提问:用圆规画圆时,圆的位置是由什么决定的?(圆心) 圆的大小是由什么决定的?(半径) 6.反馈练习。 (1)完成教材第 58 页“做一做”的第 1 题。 学生完成后,说明理由,巩固半径和直径的概念。 (2)完成教材第 58 页“做一做”的第 2 题。 在完成第 2 题时,要引导学生想到两端都在圆上的线段中,直径是最长的一条。学生试着 在没有标出圆心的圆中量出直径的长,以便掌握测量方法。 (3)完成教材第 60 页练习十三的第 15 题。 学生独立完成,老师巡视指导。 三 课堂作业新设计 1. 填表。 2.按照要求画图。 (1)画出半径是 3 厘米的圆。 (2)画出直径是 3 厘米的圆。 (

10、3)在右图中画出两个大小不同的圆,使画出的两个圆的直径之和等于已知圆的直径。 四 思维训练 看图填空。(单位:厘米) 上图中圆的直径是( )厘米,半径是( )厘米,长方形的周长是( )厘米,长 方形的面积是( )平方厘米。 参考答案 课堂作业新设计 2.略 思维训练 4 2 32 48 教材习题 教材第 58 页“做一做” 1.略 2.略 练习十三 1.略 2.6 cm 3 cm 10 cm 3.5 cm 3.略 4.略 5. 0.48 0.43 2.84 0.52 5.2 板书设计 认 识 圆 圆:一条线段绕着它固定的一端在平面上旋转一周时,它的另一端就会画出一条封闭的 曲线,这条封闭的曲线

11、叫做圆。 圆的中心点做圆心,用字母“O”表示;连接圆心和圆上任意一点的线段叫做半径,用字母 “r”表示;通过圆心并且两端都在圆上的线段叫做直径,用字母“d”表示。 备课参考 教材与学情分析 教材首先说明什么是圆,并结合周围物体说一说,这样调动了学生已有的生活经验,再通 过画圆、折圆、测量等活动,展现圆的特征,其目的在于让学生通过观察、操作理解圆中的各 部分关系,从而掌握圆的特征并解释生活中相关问题。圆是在学生学过了直线图形以及圆的 初步认识的基础上进行教学的。圆这一平面上的曲线图形,学生在生活中经常看到,它到底有 什么特征呢?是本节课学生学习的重点,在学习圆的认识时,学生通过观察、操作,自己获

12、取一 些有关圆的特征的知识,这样会大大提高学生的学习兴趣,发挥学生的主体性。本节课的重点 在于理解同一个圆的半径都相等,同一个圆里半径和直径的关系。 课堂设计说明 1.让学生举例日常生活中常见的一些圆形物体的圆面,唤起了学生对生活中圆的感知,使 学生体会到圆就在我们身边,从而培养学生观察和认识周围事物的兴趣和意识。让学生亲自 动手摸圆,说一说是如何摸出来的,学生很容易说出圆与其他平面图形的区别。它不是由线段 围成的,而是由一条光滑的曲线围成的封闭图形。把一个抽象的概念变成了一个亲身的感受, 学生兴趣很高,印象深刻。 2.通过画、折、量等操作,获得充足的、丰富的感性材料。在充分感知的基础上,通过

13、叙 述操作过程,把感知经过思维内化为表象,再通过多媒体演示及在教师的指导下,抽象概括出 圆心、半径、直径等概念,使学生掌握圆的知识,并学会思维的方法。 第二课时 教学内容 圆的对称性,用圆设计漂亮的图案 教材第 59 页的内容及练习十三的第 610 题。 教学目标 1.通过观察、操作等活动,进一步认识轴对称图形和对称轴的概念。知道圆是轴对称图 形,圆有无数条对称轴。 2.让学生能画出轴对称图形的对称轴,能根据对称轴画出与给定图形对称的图形。 3.培养学生的空间观念和探索精神。 重点难点 重点:能准确找出学过的平面图形的对称轴,能根据对称轴画出与给定图形对称的图形。 难点:画出由多个圆组成的组合

14、图形的对称轴。 教具学具 画好的圆若干个,实物投影。 教学过程 一 导入 课前布置学生收集轴对称图形。 老师将学生收集到的轴对称图形连同自己准备的蜻蜓、天平等轴对称图形贴到黑板上。 老师:同学们,黑板上这些美丽的图案都是轴对称图形,今天这节课,我们就来学习轴对称 图形。 板书课题:轴对称图形。 二 教学实施 1.圆的对称性。 老师:我们学过的长方形、正方形都是轴对称图形,我们刚刚认识的圆是轴对称图形吗? 为什么? 学生动手把圆对折,确定圆是轴对称图形。 结论:圆是轴对称图形,折痕所在的直线就是圆的对称轴。 追问:一个圆有多少条对称轴? (学生展开讨论) 出示两个圆,学生在图中分别画出两个圆的对

15、称轴。 老师强调:对称轴要用虚线表示。 追问:你能画出几条呢? 板书:圆有无数条对称轴。 2.用圆设计图案。 小组合作,用圆规和尺子,设计美丽的图案,然后集体欣赏。 3.练习。 (1)完成教材第 61 页练习十三的第 6 题。 引导学生回忆学过的轴对称图形有正方形、长方形、等腰三角形、等边三角形、等腰梯 形和圆等。 只有一条对称轴的:等腰三角形、等腰梯形 有两条对称轴的:长方形 有三条对称轴的:等边三角形 有四条对称轴的:正方形 有无数条对称轴的:圆 (2)完成第 61 页教材练习十三的第 7 题。 可以让学生先描点再画线,画出与给定图形对称的图形。 (3)完成教材第 61 页练习十三的第 8

16、10 题。 三 课堂作业新设计 1.填空。 (1)如果一个图形沿着( )对折,两侧的部分能够( ),这个图形就是轴对称图 形。折痕所在的这条直线就叫做( )。 (2)圆是( )图形,它有( )条对称轴。 2.选择。(把正确答案的序号填在括号里) (1)下列各图形中,( )不是轴对称图形。 A.长方形 B.正方形 C.平行四边形 D.圆 (2)圆有( )条对称轴。 A. 1 B. 2 C.无数 D. 3 四 思维训练 1.下面各图形分别有几条对称轴?请你画出来。 2.请你用直尺和圆规设计一个轴对称图形。 参考答案 课堂作业新设计 1. (1)一条直线 完全重合 对称轴 (2)轴对称 无数 2.

17、(1)C (2)C 思维训练 1.一条 一条 三条 画图略 2.略 教材习题 练习十三 6.略 7.略 8.无数条 无数条 2 条 1 条 3 条 2 条 9.直径:183=6(cm) 周长:(18+6)2=48(cm) 10.略 板书设计 轴对称图形 圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条直径,所以圆有无数 条对称轴。一条直线是不是圆的对称轴,可以通过观察这条直线是否通过圆心来判断。 用圆规和直尺设计漂亮的图案。 备课参考 教材与学情分析 轴对称是一种最基本的图形变换。在自然界和日常生活中具有轴对称性质的事物很多, 学生对于轴对称现象并不很陌生。本节课按照“知识引入概念教学知

18、识应用”的顺序逐步 展开的,体现了知识的形成过程。 课堂设计说明 1.通过情境活动,引导学生感知轴对称。 采用有趣的剪纸比赛等方法导入,让学生经历由特殊到一般,再到特殊的过程,可以非常 巧妙地抓住学生的心理,让学生在游戏的活动中体验、感知轴对称。 2.教学中突出学生的主体地位。 学生剪一剪、议一议,探究出了轴对称的秘密。恰当的评价,调动学生的积极性,拓展学生 的思维空间,关注学生的情感体验,更突出了学生的主体地位。 从参与面上看,全班学生都调动 起来了,参与热情也比较高。 3.拓展运用、强化表象。 让学生感悟到数学知识就在我们身边,数学应用就在我们的生活之中。教师可以巧妙地 把数学知识运用到“

19、科学” “艺术” “建筑”等学科中,注重不同学科知识的整合,这样不仅降低了学 生理解上的难度,还使得单调的内容变得丰富多彩,进一步使学生感受到数学学习的乐趣和 应用价值。 2 圆的周长 第一课时 教学内容 圆的周长 教材第 6264 页的内容。 教学目标 1.使学生直观认识圆的周长,掌握圆的周长的计算公式。 2.通过对圆周率 的值的探索,培养学生的联想能力和初步的逻辑思维能力。 3.介绍我国数学家对圆周率研究的贡献,对学生进行爱国主义教育和辩证唯物主义的启 蒙教育。 重点难点 重点:掌握圆的周长的计算公式。 难点:圆的周长公式的推导。 教具学具 投影片,直尺,细线,绳子和圆片。 教学过程 一

20、导入 1.老师用投影片出示下面两个图形,让学生找出直径和半径。 提问:什么是圆的直径?什么是半径?在一个圆中直径和半径的长度有什么关系? 2.老师用投影片出示下面的图形。 提问:什么是长方形的周长?什么是正方形的周长?它们的计算结果用的是什么计量单 位? 学生指出这两个图形的周长,并进行计算。 二 教学实施 1.圆的周长的含义。 (1)让学生拿出发的圆形纸片,平放在桌面上,试着指一指圆形纸片的周长,注意起点和终 点。 (2)指名学生指一指圆的周长。 (3)说明围成圆的曲线的长度叫做圆的周长。 2.讨论绳测法和滚动法,渗透化曲为直的思想。 学生用手中的直尺和细线等学具试着测量手中圆形纸片的周长。

21、 (1)绳测法。 用线绕圆的一周,从这一点开始,再到这一点,多余部分剪掉,拉直,这条线段的长度是谁的 长度? (2)滚动法。 让圆滚动一周,从直尺的 0 刻度到滚动一周的终点,这段距离是谁的长度? (3)用绳测法和滚动法,可以测量出手中圆形纸片的周长,这个圆的周长是多少呢? 3.探究圆的周长与什么有关系。 (1)讨论圆的周长与什么有关系。 屏幕演示:直径是1分米的圆,滚动了一周,这段距离就是这个圆的周长;直径是0.8分米的 圆滚动一周的距离就是这个圆的周长。 (2)小结:直径长,周长长;直径短,周长短。由此看出圆的周长和直径有关系。 板书:圆的周长 直径 4.探究圆的周长与它的直径有什么关系。

22、 学生分组实验,测量圆的周长,计算周长是直径的多少倍。每组把量得的数据填在表格 里。 指名说一说得出的结果,老师把这些数据写在黑板上。引导学生进行讨论,使学生了解到 圆的周长总是直径的 3 倍多一些。 老师归纳:任何圆的周长和直径的比值都是 3.14 多一些,它们的比值是一个固定不变的 数。我们把圆的周长和直径的比值叫做圆周率。 5.介绍圆周率。 (1)阅读教材第 63 页的“你知道吗?” 。 (2)老师说明:圆周率用字母(pi)表示,它是一个无限不循环小数,=3.1415926535在 实际应用中一般只取它的近似值,即 3.14。 6.归纳公式。 如果用 C 表示圆的周长,那么:C=d 或

23、C=2r。 7.计算圆的周长。 老师出示例 1,指名读题,然后板书解题过程。 板书:23.1433=207.24(cm) 207.24cm2m 1km=1000m 10002=500(圈) 答:这辆自行车轮子转 1 圈,大约可以走 2 m。小明从家到学校,轮子大约转了 500 圈。 三 课堂作业新设计 1.直接写出下面各题的得数。 3.141= 3.142= 3.143= 3.144= 3.145= 3.146= 3.147= 3.148= 3.149= 2.求下面各圆的周长。 3.填表。 半径 r(m) 直径 d(m) 周长 C(m) 4 1.2 12.56 4.一辆汽车的车轮直径是 1.0

24、2 米,车轮转动 10 周前进多少米?(得数保留一位小数) 四 思维训练 从一张边长为 6 厘米的正方形纸上剪下一个最大的圆,这个圆的周长是多少厘米? 参考答案 课堂作业新设计 1. 3.14 6.28 9.42 12.56 15.7 18.84 21.98 25.12 28.26 2. 12.56 cm 18.84 cm 50.24 cm 3. 8 25.12 0.6 3.768 2 4 4. 32.0 米 思维训练 18.84 厘米 教材习题 教材第 64 页“做一做” 1. 18.84 cm 18.84 cm 31.4 cm 2. 1.5 m 板书设计 圆 的 周 长 任意一个圆的周长与

25、它的直径的比都是一个固定的数,我们把它叫做圆周率。用字 母 表示。圆周率是一个无限不循环小数,如无特殊要求,圆周率 一般取 3.14 。 根据圆周率的定义可以得知:圆的周长=直径圆周率=半径2圆周率。 23.1433=207.24(cm) 207.24cm2m 1km=1000m 10002=500(圈) 答:这辆自行车轮子转 1 圈,大约可以走 2 m。骑车从家到学校,轮子大约转了 500 圈。 备课参考 教材与学情分析 教材向我们呈现了什么是圆的周长,以及通过操作发现圆的周长与直径的关系,展示了 如何计算圆的周长,可见圆的周长的计算方法是通过学生自主探索总结发现的,教学时,我们 应充分认识

26、到这一点。学生已经有了对周长的认识,只是研究圆的周长需要探索圆的周长与 直径的关系。对于圆的周长与直径的这个倍数关系,学生通过测量、计算是能发现的。教学 时,关键是引导学生发现圆的周长与直径之间的倍数关系。 课堂设计说明 1.让学生在生活中学习数学。 本节课选取实际生活中的场景,融小组合作、动手操作以及观察、归纳和概括为一体,引 导学生的多种感官参与学习过程;同时通过介绍“圆周率”的发展历史,来开拓学生的视野,丰富 学生的知识面,使学生了解知识的来龙去脉,对学生进行了生动的爱国主义教育,激发学习兴 趣。而且,利用圆周率的意义准确解答开始的问题,前后呼应,使计算公式的总结水到渠成。 2.提高应用

27、意识,努力体现课堂教学的开放性。 把所学的知识应用于生活实际,不但可以使学生感到我们所学的知识是有用的,而且有 利于提高学生灵活应用知识的本领,在本节课的最后部分可以安排几个生活问题,提高学生 的应用意识,不但培养了学生开放型的思维方式,还激发了学生动手的愿望。 第二课时 教学内容 圆的周长练习课 教材第 65、第 66 页的练习十四。 教学要求 1.通过练习,巩固对圆的周长公式的理解和掌握,能熟练应用圆的周长公式解决问题。 2.进一步培养学生应用公式解题的能力。 3.培养学生仔细观察、积极思考的学习习惯。 重点难点 灵活应用圆的周长公式解题。 教具学具 实物投影。 教学过程 一 导入 1.老

28、师:什么是圆的周长?什么是圆周率?圆的周长的计算公式是什么? 板书:C=d C=2r 2.完成下列口算练习。 3.141= 3.142= 3.143= 3.144= 3.145= 3.146= 3.147= 3.148= 3.149= 3.1410= 3.1420= 3.14100= 要求学生先口算出结果,再熟记。 二 教学实施 1.完成教材第 65 页练习十四的第 1、第 2 题。 (1)学生独立完成,写在练习本上。 (2)集体订正。 (3)提醒学生正确应用公式。 已知半径,求周长:C=2r 已知直径,求周长:C=d 2.完成教材第 65 页练习十四的第 3 题。 (1)指名读题。 (2)独

29、立完成。 (3)学生板演,说说自己使用的方法。 已知周长,求直径:d=C 提问:如果已知周长,求半径,用什么方法呢? 板书:r=C2 3.完成教材第 65 页练习十四的第 4 题。 (1)指名读题。 (2)说说怎样求出规定时间内,分针的尖端所走的路程。 点拨:求规定时间内,分针的尖端所走的路程就是求以分针(20 cm)为半径的圆的周长。 (3)学生接着完成后面的问题。 4.完成教材第 65、第 66 页练习十四的第 511 题。 学生独立完成,集体订正。 三 课堂作业新设计 1.填空。 (1)圆的周长总是它直径的( )倍。 (2)用 C 表示圆的周长,d 表示圆的直径,r 表示圆的半径,圆的周

30、长的计算公式可以写成 ( )或( )。 长的( )。 (4)用周长是 2 分米的正方形纸片剪成一个最大的圆,这个圆的周长是( )厘米。 2.求下面各图形的周长。 3.一个圆形蓄水池,从里边量周长是 50.24 米。它的半径是多少米? 4.一个半圆形花坛,外围周长是 51.4 米。这个花坛的直径是多少米? 四 思维训练 看图填空。 左图中两个圆的面积相等,圆心分别是 O1、O2,半径是( )厘米,直径是( ) 厘米,每个圆的周长是( )厘米,长方形的周长是( )厘米。 参考答案 课堂作业新设计 5. 1523.143=282.6(m) 1523.142=47.147(根) 6. 50.24 m=

31、5024 cm 5024(403.14)=40(周) 7. (1)16 12.56 (2)9.42 21 8. 10042=12.5(厘米) 9. 504+503.142=278.5(厘米)=2.785(米) 10. 253.14=31.4(厘米) 11.* 第一组:3.147+72=35.98(cm) 第二组:3.147+74=49.98(cm) 第三组:3.147+78=77.98(cm) 发现略 3 圆的面积 第一课时 教学内容 圆的面积 教材第 67、第 68 页的内容。 教学要求 1.使学生理解圆的面积公式的推导过程,掌握求圆的面积的方法并能正确计算。 2.培养学生运用转化的思想解决

32、问题的能力。 重点难点 重点:掌握圆的面积的计算公式,能够正确地计算圆的面积。 难点:理解圆的面积公式的推导过程。 教具学具 实物投影,各种图形的纸片。 教学过程 一 导入 1.我们学过哪些平面图形的面积公式? 2.长方形、平行四边形和三角形的面积公式分别是什么? 3.平行四边形的面积公式是如何推导的? 小结:平行四边形面积公式的推导,提供给我们一种研究平面图形的面积的方法,即把所 学的图形进行分割、拼摆,转化成学过的图形,用旧知识解决新问题。今天,我们还要用转化的 思想研究圆的面积。 二 教学实施 1.明确圆的面积的概念。 (1)老师出示一个圆,提问:谁能联系我们学过的图形的面积说一说圆的面

33、积是什么? 学生回答,老师归纳:圆所围成的平面的大小叫做圆的面积。 (2)圆的大小是由什么决定的? (3)展示由“曲”变“直”的渐变图。 引导学生逐层观察圆周曲线的变化情况,把圆等分的份数越多,圆周曲线就越来越直,当 我们继续分下去圆周曲线就变成一条近似的直线段了,用这样的小块拼摆的图形就更近 似于我们学过的图形。 2.学生动手操作,推导圆的面积公式。 为了研究方便,我们把圆等分成 16 份,圆周部分近似看作线段,其中的一份是个近似的三 角形, (1)指导学生动手摆学具,并思考几个问题: 你摆的是什么图形? 你摆的图形的面积与圆的面积有什么关系? 所摆图形的各部分相当于圆的什么? 你如何推导出

34、圆的面积? (2)学生动手摆学具,然后发言。 拼成长方形: 老师说明:如果分的份数越多,每一份就会越小,拼成的图形就会越接近长方形。 出示教材第 67 页上面的图加以说明。 拼成的近似长方形的长和宽与圆的各部分有什么关系? 从图中可以看出圆的半径是 r,长方形的长是 r,宽是 r。 长方形的面积=长宽 圆的面积=r r=r2 如果用 S 表示圆的面积,那么圆的面积计算公式就是 S=r2。 3.利用公式计算圆的面积。 出示例 1:圆形草坪的直径是 20m,每平方米草皮 8 元。铺满草坪需要多少钱? 指名读题,让学生试做,提醒学生不用写公式,直接列算式就可以。 板书: 202=10(m) 3.14

35、102 =3.14100 =314(m2) 3148=2512(元) 答:铺满草坪需要 2512 元。 老师强调指出:列出算式后,要先算平方,再与 相乘。 三 课堂作业新设计 1.直接写出得数。 22= 32= 42= 52= 62= 72= 82= 92= 102= 0.22= 0.72= 0.92= 2.求下面各圆的面积。 3.一块圆形铁板的半径是 3 分米。它的面积是多少平方分米? 4.一个圆桌桌面的直径是 1.2 米。它的面积是多少平方米? 四 思维训练 计算阴影部分的面积。(单位:分米) 参考答案 课堂作业新设计 1.4 9 16 25 36 49 64 81 100 0.04 0.

36、49 0.81 2. 12.56 平方分米 28.26 平方分米 1256 平方厘米 28.26 平方米 3. 28.26 平方分米 4. 1.1304 平方米 思维训练 3.44 平方分米 板书设计 圆 的 面 积 长方形的面积=长宽 圆的面积=rr=r2 202=10(m) 3.14102 =3.14100 =314(m2) 3148=2512(元) 答:铺满草坪需要 2512 元。 备课参考 教材与学情分析 本部分内容是在初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形的面 积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本 身还是研究方法,都是

37、一次质的飞跃。 学生掌握了圆面积的计算,不仅能解决简单的实际问题, 也为以后学习圆柱、圆锥的知识打下基础。学生已经有了平面几何图形的经验,知道运用转 化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转 化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。 课堂设计说明 1.通过实际情境,一方面使学生了解圆的面积的含义,另一方面使学生体会到在实际生活 中计算圆面积的必要性。 2.教学时,强调知识迁移的过程。 平行四边形、三角形和梯形的面积公式推导过程是学生知识迁移的基础,这一环节的设 计既能勾起学生对已有知识的回忆,又能启发学生运用转化的思想解决数学问题。 3

38、.组织学生观察猜想。 先观察再猜想的方法既培养了学生的空间想象力,又发展了学生的逻辑推理能力。 第二课时 教学内容 圆环的面积 教材第 68 页的内容。 教学要求 1.使学生进一步掌握求圆的面积的方法,学会求圆环的面积的计算方法。 2.培养学生主动研究、探索解决问题的方法的能力。 重点难点 求圆环的面积的计算方法。 教具学具 实物投影,圆环纸片。 教学过程 一 导入 1.什么是圆的面积?圆的面积计算公式是什么? 2.求下面各圆的面积。 二 教学实施 1.出示例 2。 光盘的银色部分是一个圆环,内圆半径是 2 cm,外圆半径是 6 cm。圆环的面积是多少? (1)指名读题。 (2)出示光盘图。

39、提问:光盘的面积是什么图形的面积?求光盘的面积是求哪部分的面积?怎样求光盘的面 积? 学生回答:光盘的面积是圆环的面积,求光盘的面积就是求圆环的面积。 老师拿出事先做好的教具,演示圆环形成的过程,左手拿着教具,右手把内圆向后推掉,成 为一个圆环,让学生认真观察演示过程,明确从外圆的面积中减去内圆的面积就得到圆环的 面积。 板书:圆环的面积=外圆的面积-内圆的面积 让学生说一说外圆的半径是多少,外圆的面积怎样求,内圆的半径是多少,内圆的面积怎 样求。 2.学生列综合算式解答。 老师巡视,了解学生列算式的情况。 板书: 3.1462-3.1422 或 3.14(62-22) =113.04-12.

40、56 =3.1432 =100.48(cm2) =100.48(cm2) 答:圆环的面积是 100.48cm2。 3.比较两种方法。 大部分学生用的是第一种方法,即大圆的面积减去小圆的面积。如果有学生用的是第二 种方法,老师要予以表扬。这些学生联系以前学习的乘法分配律,使计算简便。这种计算圆环 面积的方法,不必要求全体学生掌握。 老师归纳出第二种方法的计算公式: S环=(R2-r2) 其中,R 是外圆半径,r 是内圆半径。 三 课堂作业新设计 1.直接写出得数。 102= 202= 302= 402= 3.143= 3.142= 112= 122= 132= 142= 3.145= 3.144

41、= 152= 162= 172= 182= 3.146= 3.148= 2.求下面各图中阴影部分的面积。(单位:分米) (1) (2) 3.铸造厂要生产一种圆环形的钢板。这种环形钢板的内圆半径是 6 厘米,外圆半径是 15 厘米,钢板的面积是多少平方厘米? 4.一个直径为 16 米的圆形鱼池,鱼池的中心是一个直径为 6 米的圆形小岛。求鱼池水面 的面积。 四 思维训练 计算下图中阴影部分的面积。(单位:分米) (1) (2) 参考答案 课堂作业新设计 1. 100 400 900 1600 9.42 6.28 121 144 169 196 15.7 12.56 225 256 289 324

42、 18.84 25.12 2.(1)3.14(62-32)=84.78(平方分米) (2)122=6(分米) 162=8(分米) 3.14(82-62)=87.92(平方分米) 3. 3.14(152-62)=593.46(平方厘米) 4. 62=3(米) 162=8(米) 3.14(82-32)=172.7(平方米) 思维训练 (1)3.14(62)2-3.14(32)2=21.195(平方分米) 板书设计 环形的面积 圆环是指半径不相等的圆,当圆心重合时的两圆之间的部分。注意,在一个大圆内随意剪 去一个小圆是不能形成圆环的。任何一个圆环,已知内圆直径和环宽,求外圆直径应加两个环 宽;已知外

43、圆直径和环宽,求内圆直径,应减去两个环宽。 圆环的面积=外圆的面积-内圆的面积 3.1462-3.1422或 3.14(62-22) =113.04-12.56 =3.1432 =100.48(cm2) =100.48(cm2) 答:光盘的面积是 100.48 cm2。 S环=(R2-r2) R 是外圆半径,r 是内圆半径。 备课参考 教材与学情分析 本课是在学生学习了圆的面积及应用之后进行教学的,主要是学习有关圆的组合图形的 面积及应用。教材通过对直观的组合图形面积的计算,使学生建立模型,进而利用刚建立的模 型解决生活中的实际问题。对于圆环的认识,学生已有生活经验,但对于它的形成过程缺少理

44、性思考;学生对直观的圆环面积计算问题应该不大,但以此作为数学模型并用此模型解决实 际问题缺少经验,部分学生在思维上的跳跃较大,因此对本节课的学习两极分化会比较严重。 课堂设计说明 1.在教学中,以学生原有的知识为基础,搭桥铺路,以旧带新。 “温故而知新”的导入方法是我们经常用到的,要找准新旧知识的连接点,并因情况而异采 用不同的方式。 2.让学生充分参与探究圆环的形成过程。 在这个过程中教师应该充分相信学生的能力,热情鼓励学生的探索活动,给予学生充足 的时间和思维空间。最大限度地发展学生的观察能力、思考能力和探究能力,增强学生学习 数学的兴趣,培养学生实践能力和应用能力。 第三课时 教学内容

45、圆与正方形的关系及圆的面积练习课 教材第 6974 页的内容。 教学要求 1.通过练习,理解和掌握圆的周长和圆的面积的计算公式,能够正确地计算圆的周长和圆 的面积。 2.进一步培养学生的空间观念。 重点难点 正确计算圆的周长和圆的面积。 教具学具 实物投影。 教学过程 一 导入 1.口答:分别说出 19 的平方值。 2.指名回答有关圆的定义。 3.默写圆的周长和圆的面积的计算公式。 4.完成下面的练习。 (1)一个圆的周长是 18.84 厘米。这个圆的面积是多少平方厘米? 板演:18.843.142=3(厘米) 3.1432=3.149=28.26(平方厘米) (2)一个圆环形花坛的外圆半径是

46、 5 米,内圆半径是 2 米。它的面积是多少平方米? 板演:3.14(52-22)=3.1421=65.94(平方米) 二 教学实施 1.出示例 3。 (1)老师读题,帮助学生理解题意。 题中两个图都是由一个正方形和一个圆组成的,通过探索它们之间的关系,研究正方形 和圆的面积关系。 (2)分析问题。 老师:图中的两个圆的半径都是多少?(1 m) 左边求的是正方形比圆多的面积,右边求的是圆比正方形多的面积。 左边正方形的边长就是圆的直径。右边正方形的边长小于圆的直径。 (3)解决问题。 小组讨论解决方法并汇报。 由题知左图中正方形的边长就是圆的直径,由图可知: 22=4(m2) 3.1412=3

47、.14(m2) 4-3.14=0.86(m2) 右图中的正方形可以分成两个相同的三角形,它们的底和高分别是正方形的边长,形成 的第三边就是圆的直径。由图可知: 从图(2)可以看出: 当 r=1 时,和上面的结果完全一致。 (5)老师引导学生总结圆与正方形的关系。 总结:正方形里面有一个最大的圆,则正方形的边长就是圆的直径。圆里有一个最大的正 方形,则圆的直径是把正方形分成两个相同的三角形后形成的第三边。 2.完成教材第 71 页练习十五的第 1 题。 学生先独立完成,再集体订正。订正时让学生说出计算的过程。如第一行,要能说出已知 半径求直径,用 d=2r 计算出直径是 42=8(cm),已知半径求面积,用 S=r2求出面积是 3.1442=3.1416=50.24(cm2) 3.完成教材第 71

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学 > 数学 > 人教版(2024) > 六年级上册
版权提示 | 免责声明

1,本文(人教版六年级上学期数学第五单元优质教案(含单元备课).doc)为本站会员(微草)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|