1、第5讲导数的综合应用考情分析1.利用导数研究函数的单调性与极值(最值)是高考的常见题型,而导数与函数、不等式、方程、数列等的交汇命题是高考的热点和难点.2.多以解答题的形式压轴出现,难度较大母题突破1导数与不等式的证明母题(2023鞍山模拟)若f(x)(x2)22aln x有两个极值点x1,x2,证明:f(x1)f(x2)1.思路分析f(x)有两个极值点x1,x2x1,x2是方程f(x)0的两根根与系数的关系f(x1)f(x2)构造关于a的函数求最值证明f(x)x2(x0),由函数有两个极值点,得x22x2a0有两个不相等的正实数根x1,x2,则且48a0,解得02a1,由题意得,f(x1)f
2、(x2)(x12)22aln x1(x22)22aln x2(xx)2(x1x2)2aln x1x24(x1x2)2x1x22(x1x2)2aln x1x242aln 2a2a2,令t2a,h(t)tln tt2(0t1),则h(t)ln th(1)1,即f(x1)f(x2)1.子题1(2023烟台模拟)已知函数f(x)exx2x.证明:x0,),f(x)sin x.证明f(x)exx2x,可得f(0)1,f(x)exx1.当x0时,令g(x)f(x)exx1,可得g(x)ex10,所以g(x)在(0,)上单调递增,所以g(x)g(0)0,所以f(x)在(0,)上单调递增,所以f(x)f(0)
3、1,又sin x1,故f(x)sin x.当x0时,f(0)1sin 00,满足f(x)sin x.综上可得,对于x0,),都有f(x)sin x.子题2已知函数f(x)ln x,g(x)ex.证明:f(x)g(x)证明根据题意,g(x)ex,所以f(x)g(x)等价于xln xxex.设函数m(x)xln x,则m(x)1ln x,所以当x时,m(x)0,故m(x)在上单调递减,在上单调递增,从而m(x)在(0,)上的最小值为m.设函数h(x)xex,x0,则h(x)ex(1x)所以当x(0,1)时,h(x)0;当x(1,)时,h(x)0时,m(x)h(x),即f(x)g(x)规律方法利用导
4、数证明不等式问题的方法(1)直接构造函数法:证明不等式f(x)g(x)(或f(x)0(或f(x)g(x)1,则g(x)x22xln(x1),令h(x)x22xln(x1),其中x1,则h(x)3x2,当x1时,h(x)0且h(x)不恒为零,所以函数g(x)在(1,)上单调递增,所以,当1x0时,g(x)0时,g(x)g(0)0,此时函数g(x)在(0,)上单调递增,所以g(x)g(0)0,即f(x)x3x2.2(2023桂林模拟)已知函数f(x)x2cos x,求证:f(x)20.证明f(x)x2cos x,要证f(x)20,即证x2cos x20.即证x2cos x2.令g(x)x2cos
5、x,g(x)g(x),g(x)为偶函数,当x0,)时,g(x)2xsin x,令k(x)2xsin x,k(x)2cos x0,g(x)在0,)上单调递增,g(x)g(0)0,g(x)在0,)上单调递增,由g(x)为偶函数知,g(x)在(,0上单调递减,g(x)g(0)1.设h(x)2,h(x),当x1时,h(x)0,h(x)在(1,)上单调递减;当x0,h(x)在(,1)上单调递增h(x)maxh(1)1,x2cos x2.原不等式得证专题强化练1(2023咸阳模拟)已知函数f(x)(xR)(1)求f(x)在点(0,f(0)处的切线方程;(2)求证:当x0,时,f(x)x.(1)解由题知,f
6、(0)0,f(x),所以切点坐标为(0,0),斜率为f(0)1,所以所求切线为xy0.(2)证明由f(x)x,x0,得x,x0,即xexsin x0,x0,令g(x)xexsin x,x0,则g(x)exxexcos x,令h(x)exxexcos x,x0,则h(x)2exxexsin x0在0,上恒成立,所以h(x)在0,上单调递增,有h(x)h(0)0,所以g(x)0在0,上恒成立,即g(x)在0,上单调递增,所以g(x)g(0)0,即xexsin x0,x0,综上,当x0,时,f(x)x.2(2023西宁模拟)已知函数f(x)ln xx2(a1)x(aR),g(x)f(x)x2(a1)
7、x.(1)若a0,讨论f(x)的单调性;(2)任取两个正数x1,x2,当x1x2时,求证:g(x1)g(x2)0)当01时,令f(x)0,得0x1;令f(x)0,得x1,即0a0,得0x;令f(x)0,得1x.所以f(x)在(0,1)和上单调递增,在上单调递减综上所述,当0a1时,f(x)在,(1,)上单调递增,在上单调递减(2)证明由题意得,g(x)ln x.要证g(x1)g(x2),只需证ln x1ln x2,即证ln,即证ln.令t,t(0,1),所以只需证ln t在t(0,1)上恒成立,即证(t1)ln t2(t1)0在t(0,1)上恒成立令h(t)(t1)ln t2(t1),t(0,1),则h(t)ln t1,令m(t)ln t1,t(0,1),则m(t)h(1)0,所以h(t)在(0,1)上单调递增,所以h(t)h(1)0.所以g(x1)g(x2).