1、4.3任意角的三角函数任意角的三角函数(二)(二) 三角函数线三角函数线 教材:人教版高中数学第一册(下)第四章第三节教材:人教版高中数学第一册(下)第四章第三节 授课教师:河南省焦作市第一中学授课教师:河南省焦作市第一中学孟丽华孟丽华 教学背景:教学背景: 1教材地位分析:三角函数是中学数学的重要内容之一,而三角函数线的概念及其 应用不仅体现了数形结合的数学思想,又贯穿整个三角函数的教学.借助三角函数线可以推出 三角函数公式,求解三角函数不等式,探索三角函数的图像和性质,可以说,三角函数线 是研究三角函数的有利工具. 2学生现实分析:学习本节前,学生已经掌握任意角三角函数的定义,三角函数值在
2、 各象限的符号,以及诱导公式一,为三角函数线的寻找做好了知识准备.高一上学期研究指、对 数函数图像时,已带领学生学习了几何画板的基础知识,现在他们已经具备初步的几何画板应 用能力,能够制作简单的动画,开展数学实验. 教学目标:教学目标: 1知识目标: 使学生掌握如何利用单位圆中的有向线段分别表示任意角的正弦、余弦、 正切函数值,并能利用三角函数线解决一些简单的三角函数问题. 2能力目标: 借助几何画板让学生经历概念的形成过程,提高学生观察、发现、类比、 猜想和实验探索的能力;在论坛上开展研究性学习,让学生借助所学知识自己去发现新问题, 并加以解决,提高学生抽象概括、分析归纳、数学表述等基本数学
3、思维能力. 3情感目标:激发学生对数学研究的热情,培养学生勇于发现、勇于探索、勇于创新的 精神;通过学生之间、师生之间的交流合作,实现共同探究、教学相长的教学情境. 教学重点难点:教学重点难点: 1重点:三角函数线的作法及其简单应用. 2难点:利用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数值分别用它 们的几何形式表示出来. 教学方法与教学手段:教学方法与教学手段: 1教法选择: “设置问题,探索辨析,归纳应用,延伸拓展”科研式教学. 2学法指导:类比、联想,产生知识迁移;观察、实验,体验知识的形成过程;猜想、 求证,达到知识的延展. 3教学手段:本节课地点选在多媒体网络教室,学生利
4、用几何画板软件探讨数学问题, 做数学实验; 借助网络论坛交流各自的观点,展示自己的才能. 教学过程:教学过程: 一、设置疑问一、设置疑问,实验探索(实验探索(17 分钟)分钟) 教教 学环节学环节 教学过程教学过程设计意图设计意图 设设 置置 疑疑 前面我们学习了角的弧度制,角弧度数的绝对值 r l ,其中l是以角作为圆心角时所对弧的长,r 是圆 的半径.特别地, 当 r =1 时,l,此时的圆称为单位圆, 既可以引出单位 圆,又可以使学生通过 类比联想主动、快速的 问问 ,点明点明 主题主题 这样就可以用单位圆中弧的长度表示所对圆心角弧度数的 绝对值,那么能否用几何图形来表示任意角的正弦、余
5、弦、 正切函数值呢?这就是我们今天一起要研究的问题. 探索出三角函数值的 几何形式. 概概 念念 学学 习习 ,分分 散散 难难 点点 有向线段有向线段:带有方向的线段. (1)方向:按书写顺序,前者为起点,后者为终点, 由起点指向终点. 如:有向线段 OM,O 为起点,M 为终点,由 O 点指向 M 点. (动态演示) (2) 数值: (只考虑在坐标轴上或与坐标轴平行的有向 线段) 绝对值等于线段的长度,若方向与坐标轴同向,取正 值;与坐标轴反向,取负值.如: OM= 1, ON= -1, AP = 2 1 x y O -1 1 M P 2 1 A N 相关概念的学习 分散了教学难点,使学
6、生能够更多的围绕重 点展开探索和研究. OM 实实 验探验探 索索, 辨辨 析研析研 讨讨 1.(复习提问)任意角的正弦如何定义? 角的终边上任意一点 P(除端点外)的坐标是(yx,) , 它与原点的距离是 r, 比值 r y 叫做的正弦. 思考思考:能否用几何图形表示出角的正弦呢? 学生联想角的弧度数与弧长的转化, 类比猜测:若令 r=1, 则ysin.取角的终边与单位圆的交点为 P,过点 P 作x轴的垂线,设垂足为 M,则有向线段 MP=siny.(学 生分析的同时,教师用几何画板演示) 请学生利用几何画板作出垂线段 MP,并改变角的终边 位置,观察终边在各个位置的情形,注意有向线段的方向
7、和 正弦值正负的对应.特别地,当角的终边在x轴上时,有向线 段 MP 变成一个点,记数值为 0. 这条与单位圆有关的有向线段 MP 叫做角的正弦线正弦线. 2.思考思考:用哪条有向线段表示角的余弦比较合适?并 说明理由. 请学生用几何画板演示说明. 有向线段 OM 叫做角的余弦线余弦线. 3.tan x y 如何用有向线段表示? 讨论焦点:讨论焦点: 美国华盛顿一所 大学有句名言: “我听见 了,就忘记了;我看见了, 就记住了;我做过了,就 理解了.” 要想让学生深 刻理解三角函数线的 概念,就应该让学生主 动去探索,大胆去实 践,亲身体验知识的发 生和发展过程. 若 令x=1,则 ytan=
8、AT,但是第二、 三象限角的终边上没有横 坐标为 1 的点,若此时取 x=-1 的点 T,tan=-y=TA,有向线段的表示方法又不能 统一. 引导观察:引导观察: 当角的终边互为反向延长线时,它们的正切值有什么 关系? 统一认识:统一认识: 方案 1: 在象限角的终边或其反向延长线上取x=1 的点 T,则 tan=y=AT; 方案 2:借助正弦线、余弦线以及相似三角形知识得到 tan OM MP x y =AT OA AT . 几何画板演示验证几何画板演示验证: : 当角的终边落在坐标轴上时,tan与有向线段 AT 的对应. 这条与单位圆有关的有向线段 AT 叫做角的正切线正切线. 的终边的
9、终边 M P Ox y T 的终边的终边 A T A -11 (T) 教学已经不再是 把教师或学生看成孤 立的个体,而是把他们 的教和学看成是相互 影响的辩证发展过程. 在和谐的氛围中,教师 和学生都处在自由状 态,可以不受框框的束 缚,充分表达各自的意 见,在自己积极思维的 同时又能感受他人不 同的思维方式,从而打 破自己的封闭状态,进 入更加广阔的领域. 二、作法总结二、作法总结,变式演练(变式演练(13 分钟)分钟) 教教 学环节学环节 教学过程教学过程设计意图设计意图 作作 法总法总 结结 正弦线、余弦线、正切线统称为三角函数线正弦线、余弦线、正切线统称为三角函数线. 请大家总结这三种
10、三角函数线的作法,并用几何画板演 示(一学生描述,同时用电脑演示): 第一步:作出角的终边,与单位圆交于点 P; 第二步:过点 P 作x轴的垂线,设垂足为 M,得正弦线 MP、余弦线 OM; 第三步:过点 A(1,0)作单位圆的切线,它与角的终 边或其反向延长线的交点设为 T,得角的正切线 AT. 特别注意: 三角函数线是有向线段, 在用字母表示这些 线段时,要注意它们的方向,分清起点和终点,书写顺序不 能颠倒.余弦线以原点为起点,正弦线和正切线以此线段与 坐标轴的公共点为起点,其中点 A 为定点(1,0). 及时归纳总结,加 深知识的理解和记忆. 变变 式演式演 练练,提提 高能高能 力力
11、练习练习:利用几何画板画出下列各角的正弦线、余弦线、 正切线: (1 1) 6 5 ; ;(2 2) 6 13 . . 学生先做,然后投影展示一学生的作品,并强调三角函 数线的位置和方向. 例例 1 1 利用几何画板画出适合下列条件的角的终边: (1) 2 1 sin ;(2) 2 1 cos ; (3) 1tan . . 共同分析(1) ,设角的终边与单位圆交于 P( yx, ), 则 sin =y,所以要作出满足 2 1 sin 的角的终边,只要在 单位圆上找出纵坐标为 2 1 的点 P, 则射线 OP 即为的终边. (几何画板动态演示) 请学生分析(2) 、(3),同时用几何画板演示.
12、例例 2 2 利用几何画板画出适合下列条件的角的终边的 范围,并由此写出角的集合: (1)sin 2 1 ;(2)cos- 2 1 . 分析:先作出满足 2 1 sin, 2 1 cos的角的终边 (例 1 已做),然后根据已知条件确定角终边的范围.(几 何画板动态演示) 巩固练习,准确掌 握三角函数线的作法. 逆向思维,灵活运 用三角函数线,并为利 用三角函数线求解三角 函数不等式(组)作铺垫. 答案: (1)Zkkk, 6 5 2 6 2 . (2)Zkkk, 3 4 2 3 2 2 . 延伸延伸:通过(1) 、 (2)两图形的复合又可以得出不等式 组 . 2 1 cos ; 2 1 si
13、n 的解集: Zkkk, 6 5 2 3 2 2 . 数形结合思想表现 在由数到形和由形到数 两方面.将任意角的正 弦、余弦、正切值分别 用有向线段表示出来体 现了由数到形的转化; 借助三角函数线求解三 角函数方程和不等式又 发挥了由形到数的巨大 作用. 三、思维拓展三、思维拓展,论坛交流(论坛交流(10 分钟)分钟) 教教 学环节学环节 教学过程教学过程设计意图设计意图 思思 维维 拓拓 观察角的终边在各位置的情形,结合三角函数线和已学 知识,你能发现什么规律,得出哪些结论?请说明你的观点 和理由,并发表于焦作一中教育论坛 (). 给学生建设一个 开放的、有活力、有个 性的数学学习环境.论
14、展展 ,论坛论坛 交流交流 学生得出的结论有以下几种: (1) sin 2 + c os 2 = 1; (2)sin + cos1; (3) -1sin1, -1cos1, tanR; (4) 若两角终边互为反向延长线,则两角的正切值相 等,正弦、余弦值互为相反数; (5) 当角的终边在第一象限逆时针旋转时,正弦、正 切值逐渐增大,余弦值逐渐减小; (6) 当角的终边在直线xy 的右下方时, sincos ;当角的终边在直线xy 的左上方时, sincos; 坛交流既能展示个人 才华,又能照顾到各个 层次的学生.来自他人 的信息为自己所吸收, 自己的既有知识又被 他人的视点唤起,产生 新的思想
15、.这样的学习 过程使学生在轻松达 成一个个阶段目标之 后,顺利到达数学学习 的新境界. 四、归纳小结四、归纳小结,课堂延展(课堂延展(5 分钟)分钟) 教教 学环节学环节 教学过程教学过程设计意图设计意图 归归 纳纳 小小 结结 1.回顾三角函数线作法. 2.三角函数线是利用数形结合思想解决有关问题的重 要工具, 自从著名数学家欧拉提出三角函数与三角函数线的 对应关系, 使得对三角函数的研究大为简化, 现在仍然是我 们解三角不等式、 比较大小、 以及今后研究三角函数图像与 回顾三角函数线作 法,再次加深理解和记 忆.点明三角函数线在 其他方面的应用,以及 数形结合思想,便于学 性质的基础.生在
16、后续学习中更深入 的思考,更广泛的研究. 巩巩 固创固创 新新, 课课 堂堂 延延 展展 巩固作业巩固作业:习题 4.31,2 提升练习: 1. 已知:sinsin,那么下列命题成立的是() A若、是第一象限的角,则 coscos. B. 若、是第二象限的角,则 tantan. C. 若、是第三象限的角,则 coscos. D. 若、是第四象限的角,则 tantan. 2求下列函数的定义域: (1) y =1cos2x;(2) y = lg(34sin2x) . 延展作业延展作业: 1. 类比正切线的作法,你能作出余切线吗? 2.结合三角函数线我们已经发现了一些很有价值的结 论,你还能得出哪些
17、结论?请大家继续在论坛上交流. 3.查阅数学家欧拉的生平事迹,了解他在数学方面的突 出贡献,谈谈你的学习感受,并发表于论坛交流. 既能保证全体学生 的巩固应用,又兼顾学 有余力的学生,同时将 探究的空间由课堂延伸 到课外. 教学设计说明教学设计说明: 1.让计算机软件和网络真正走入数学课堂,发挥它们的辅助作用. “让计算机软件和网络走入数学课堂”是提出了多年的口号,但是如何真正让多媒体在 数学学习中发挥积极的作用却是我们一直在探索的问题.本节课有较广的延展面,是培养学生 发现、探索、创新能力的很好素材,但是要在一节课 45 分钟时间内实现构想,对课的安排提 出了非常高的要求.几何画板软件的动画
18、演示功能正好可以帮助学生做数学试验,探讨数学问 题;网络论坛可以让他们充分交流,相互学习.为此,我把授课地点放在多媒体网络教室,充 分发挥多媒体的优势,既丰富了三角函数线的概念,又培养了学生发现问题、解决问题的能 力,探索精神、创新意识也有了相应的提高. 2.不仅要让学生掌握数学的基础知识,更要让他们领悟科学的研究方法. 课堂教学最终是为了让学生摆脱课堂,独立学习,所以不仅要让学生掌握数学的基础知识, 更要让他们领悟科学的研究方法.本节课所采用的科研式教学法体现了研究新问题的一般思 路,让学生逐步领悟这种科学的研究方法,有利于他们今后能够独立地开展科研活动. 3.使学生始终保持学习兴趣,快乐学数学. 苏霍姆林斯基说过: “在人的内心深处,都有一种根深蒂固的需要,那就是希望自己是一 个发现者和探索者.”本节课正是抓住学生的这一心理需求,充分利用互动工具,让学生动手 实践、思考探索,合作交流,真正意义上做到尊重学生的创造性,挖掘学生的潜力,让他们 对整个学习过程充满激情,快乐学数学!