1、课题:椭圆及其标准方程课题:椭圆及其标准方程 教材:人教版高二(上)第八章第一节教材:人教版高二(上)第八章第一节 授课教师:河南许昌高级中学授课教师:河南许昌高级中学赵小强赵小强 教学目标教学目标: (一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程 (二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际 问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力 (三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇 于探索,敢于创新的精神 教学重点教学重点:椭圆的定义和椭圆的标准方程 教学难点教学难点:椭圆标准方程的推导 教学方法
2、教学方法:探究式教学法,即教师通过问题诱导启发讨论探索结果,引导学 生直观观察归纳抽象总结规律,使学生在获得知识的同时,能够掌握方法、 提升能力 教具准备教具准备:多媒体课件和自制教具:绘图板、图钉、细绳 教学过程教学过程: (一)设置情景,引出课题(一)设置情景,引出课题 问题:2005 年 10 月 12 日上午 9 时, “神州六号”载人飞船顺利升空,实现 多人多天飞行,标志着我国航天事业又上了一个新台阶,请问: “神州六号”飞 船的运行轨道是什么?多媒体展示“神州六号”运行轨道图片 (二)启发诱导,推陈出新(二)启发诱导,推陈出新 复习旧知识:圆的定义是什么?圆的标准方程是什么形式?
3、提出新问题: 椭圆是怎么画出来的?椭圆的定义是什么?它的标准方程又是 什么形式? 引出课题:椭圆及其标准方程 (三)小组合作,形成概念(三)小组合作,形成概念 动画演示椭圆形成过程 提问:点 M 运动时,F1、F2移动了吗?点 M 按照什么条件运动形成的轨迹 是椭圆? 下面请同学们在绘图板上作图,思考绘图板上提出的问题: 1在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符 合什么条件?其轨迹如何? 2改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗? 3当绳长小于两图钉之间的距离时,还能画出图形吗? 学生经过动手操作独立思考小组讨论共同交流的探究过程, 得出这样 三个结
4、论: 1212 | |MFMFFF+椭圆 1212 | |MFMFFF+=线段 1212 | |MFMFFF+,则 12 (,0),( ,0)FcF c- 设M与两定点 21,F F的距离的和等于a2 列式: 12 |2MFMFa+= 2222 ()()2 ,xcyxcya+-+= 化简: (这里, 教师为突破难点, 进行设问: 我们怎么化简带根式的式子? 对于本式是直接平方好还是整理后再平方好呢?) 2222 ()2()xcyaxcy+=-+ 两边平方,得: 2222222 ()44()()xcyaaxcyxcy+=-+-+ 即 222 ()acxaxcy-=-+ 两边平方,得: 42222
5、222 2()aa cxc xaxca y-+=-+ 整理,得: 22222222 ()()acxa yaac-+=- 令 222( 0)acb b-=,则方程可简化为: 222222 bayaxb 整理成:)0( 1 2 2 2 2 ba b y a x 指出:方程)0( 1 2 2 2 2 ba b y a x 叫做椭圆的标准方程,焦点在x轴上,焦 点是 222 21 ),0 ,(),0 ,(baccFcF 讨论:如果以 21,F F所在直线为y轴,线段 21F F的垂直平分线为x轴,建立 直角坐标系,焦点是), 0(), 0( 21 cFcF,椭圆的方程又如何呢? 让按照另外方案推导椭圆
6、标准方程的同学发言并演示动画进行讨论得出: )0( 1 2 2 2 2 ba b x a y 为椭圆的另一标准方程,而其他建系方案得出的椭圆方程 没有标准方程形式简单 引导学生思考:已知椭圆标准方程,如何判断焦点位置? 讨论得出:看 2 x, 2 y的分母大小,哪个分母大就在哪一条轴上 (五)例题讲解(五)例题讲解 例 1求适合下列条件的椭圆的标准方程: (1)两个焦点的坐标分别是(4,0) 、 (4,0) ,椭圆上一点 P 到两焦点距 离的和等于 10; (2)两个焦点的坐标分别是(0,2) 、 (0,2) ,并且椭圆经过点). 2 5 , 2 3 ( 例 2已知椭圆的焦距等于 8,椭圆上一
7、点 P 到两焦点距离的和等于 10,求 椭圆的标准方程 (六)课堂练习(六)课堂练习 1已知椭圆方程为1 3223 22 yx ,则这个椭圆的焦距为() (A)6(B)3(C)53(D)65 2 21,F F是定点,且6| 21 FF,动点M满足6| 21 MFMF,则点M的 轨迹是() (A)椭圆(B)直线(C)圆(D)线段 3已知椭圆1 1625 22 yx 上一点 P 到椭圆一个焦点的距离为 3,则 P 到另一 焦点的距离为() (A)2(B)3(C)5(D)7 (七)课堂小结(七)课堂小结 (1)椭圆的定义及其标准方程; (2)标准方程中cba,的关系; (3)焦点所在的轴与标准方程形
8、式之间的关系. (八)作业布置(八)作业布置 P96习题 8.1 的 1、2、3 思考题 1如果方程1 22 kyx表示焦点在y轴上的椭圆,那么实数k的取值范围 是() (A) (0,+)(B) (0,2)(C) (1,+)(D) (0,1) 2椭圆1 4 22 y m x 的焦距是 2,则实数m的值是() (A)5(B)8(C)3 或 5(D)3 3已知 21,F F是椭圆1 4925 22 yx 的两个焦点,过 1 F的直线与椭圆交于 A、B 两点,则 2 ABF的周长为() (A)86(B)20(C)24(D)28 4方程1 22 ByAx什么时候表示椭圆?什么时候表示焦点在x轴上的椭
9、圆?什么时候表示焦点在y轴上的椭圆? 最后在播放彗星图片时,提出课外延伸问题,让学生通过上网或到图书馆查 阅有关彗星的资料并试着回答:为什么有的彗星经过若干年后能够再次光临地 球,而有的彗星却和地球只有一面之缘呢? 板书设计板书设计 椭圆及其标准方程椭圆及其标准方程 一 椭圆的定义 二 椭圆的标准方程 椭圆标准方程的推导例一 例二 说说明明 学习的过程是一个将外界的新信息不断搭建在已有知识上的过程,是认知学习的过程是一个将外界的新信息不断搭建在已有知识上的过程,是认知 结构发生重组和改造的过程。本课在设计中充分考虑到了学生的这一实际情况结构发生重组和改造的过程。本课在设计中充分考虑到了学生的这
10、一实际情况 及学生的认知规律。为了突破重点,在教学设计中采用了循序渐进、逐层推进及学生的认知规律。为了突破重点,在教学设计中采用了循序渐进、逐层推进 的方法的方法:先用多媒体演示先用多媒体演示神州六号飞船神州六号飞船绕地球运行的轨道绕地球运行的轨道图片图片形象地给出椭圆形象地给出椭圆, 使学生对椭圆有一个直观的了解;再让学生自己举例、动手操作使学生对椭圆有一个直观的了解;再让学生自己举例、动手操作“定性定性”地画地画 出椭圆和探究归纳定义;最后通过坐标法出椭圆和探究归纳定义;最后通过坐标法“定量定量”地描述椭圆。这种从感性到地描述椭圆。这种从感性到 理性地抽象概括,从而形成概念,推出方程的过程
11、符合学生的认知规律。为使理性地抽象概括,从而形成概念,推出方程的过程符合学生的认知规律。为使 学生更好地掌握椭圆的标准方程。学生更好地掌握椭圆的标准方程。 为突破难点,在设计中通过课堂精心设问:为突破难点,在设计中通过课堂精心设问:教师问:化简含有根号的式教师问:化简含有根号的式 子时,我们通常有什么方法?子时,我们通常有什么方法?教师问:对于本式是直接平方好呢还是恰当整教师问:对于本式是直接平方好呢还是恰当整 理后再平方?这样,椭圆方程的化简这一难点也就迎刃而解了。理后再平方?这样,椭圆方程的化简这一难点也就迎刃而解了。 爱因斯坦说过爱因斯坦说过: “单纯的专业知识灌输只能产生机器单纯的专业
12、知识灌输只能产生机器,而不可能造就一个和而不可能造就一个和 谐发展的人才谐发展的人才” ,因此数学学习的核心是思考因此数学学习的核心是思考,离开思考就没有真正的数学离开思考就没有真正的数学。针针 对这节课的问题,教师边演示,边提问,让学生边观察,边思考,边讨论,最对这节课的问题,教师边演示,边提问,让学生边观察,边思考,边讨论,最 大限度地调动学生积极参与教学活动,在教学难点处适当放慢节奏,给学生充大限度地调动学生积极参与教学活动,在教学难点处适当放慢节奏,给学生充 分的时间进行思考与讨论,教师适时给予适当的思维点拨,必要的可进行大面分的时间进行思考与讨论,教师适时给予适当的思维点拨,必要的可进行大面 积提问积提问,让学生做课堂的主人让学生做课堂的主人,充分发表自己的意见充分发表自己的意见。这样既有利于化解难点这样既有利于化解难点、 突出重点,也有利于充分发挥学生的主体作用,使课堂气氛更加活跃,让学生突出重点,也有利于充分发挥学生的主体作用,使课堂气氛更加活跃,让学生 在生生互动、师生互动中掌握知识,提高解决问题的能力。在生生互动、师生互动中掌握知识,提高解决问题的能力。