关于初高中衔接的教学建议.ppt

上传人(卖家):四川天地人教育 文档编号:1870551 上传时间:2021-11-16 格式:PPT 页数:23 大小:222KB
下载 相关 举报
关于初高中衔接的教学建议.ppt_第1页
第1页 / 共23页
关于初高中衔接的教学建议.ppt_第2页
第2页 / 共23页
关于初高中衔接的教学建议.ppt_第3页
第3页 / 共23页
关于初高中衔接的教学建议.ppt_第4页
第4页 / 共23页
亲,该文档总共23页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、关于初高中衔接的教学建议关于初高中衔接的教学建议 一一.初高中课标的差异初高中课标的差异 二二.初高中需要衔接的内容初高中需要衔接的内容 三三.初高中衔接的方式初高中衔接的方式 一一.初高中课标的差异初高中课标的差异 初中课标初中课标:数学学习内容应当是现实的、有意 义的、富有挑战性的,有利于学生主动地进 行观察、实验、猜测、验证、推理与交流等 数学活动。 高中课标高中课标:根据不同数学内容的要求,努力揭 示数学的本质。通过典型例子的分析和学生 自主探索活动,使学生理解数学概念、结论 的形成过程,体会思想方法。 二二.初高中需要衔接的内容初高中需要衔接的内容 1.计算能力、演绎推理能力计算能力

2、、演绎推理能力 2.代数式代数式的恒等变形的恒等变形 3.一元二次方程的根的判别式和根与系数关系一元二次方程的根的判别式和根与系数关系 4.二次函数的三种表达式(一般式、顶点式、二次函数的三种表达式(一般式、顶点式、 两根式)(较熟练地掌握)两根式)(较熟练地掌握) 5.一元二次方程与二次函数的关系一元二次方程与二次函数的关系 6. 三元一次方程组三元一次方程组与二元二次方程组的解法与二元二次方程组的解法 7.分段函数分段函数 8.平行线分线段成比例定理平行线分线段成比例定理 9.数学思想方法数学思想方法(待定系数法等)(待定系数法等) 10.对证明的对证明的认识认识 11.绝对值绝对值不等式

3、不等式 12.一元二次不等式一元二次不等式 三三.初高中衔接的方式初高中衔接的方式 (1)集中一段时间进行衔接内容教学)集中一段时间进行衔接内容教学 由于高一(上)要学完必修由于高一(上)要学完必修1、2,所以学习这,所以学习这 部分内容的时间不可能长,只能选择一些内容上部分内容的时间不可能长,只能选择一些内容上. (2)在高中内容学习需要时进行衔接内)在高中内容学习需要时进行衔接内 容教学容教学 几何衔接内容可以根据学习需要时补几何衔接内容可以根据学习需要时补. 计算能力、演绎推理能力计算能力、演绎推理能力 学生的现状:学生的现状: (1)计算能力差,初中学习过程中过分依赖 计算器; (2)

4、初中强调感受公理化,对形式化的演绎 推理要求不高。 代数式代数式 1.二次根式的性质、计算、化简二次根式的性质、计算、化简 aa 2 ababa 23 a a a 1 学生现状:初中学生现状:初中 没学过二次根式,没学过二次根式, 对二次根式定义、对二次根式定义、 性质没有很好地性质没有很好地 理解理解. 化简过程中的符化简过程中的符 号意识差号意识差. 建议生源不好的建议生源不好的 学校不要要求学校不要要求. . 1, 01 01 , 01 ,11 2 2 2 22 aa a a aa 则 成立若 问题:学生对二次根式的双重非负性理解问题:学生对二次根式的双重非负性理解 有困难有困难. .1

5、0111112的大小和问题:比较 分析:比较大小的方法有作差法和分析:比较大小的方法有作差法和 作商法作商法,这里可以用作商的方法这里可以用作商的方法: 1 1112 1011 1011 1112 从这里过渡到分子有理化学生比较从这里过渡到分子有理化学生比较 容易接受容易接受. 生源好的学校可以介绍生源好的学校可以介绍. 案例:分子有理化案例:分子有理化 2.分解因式中的十字相乘法、分组分解法、求分解因式中的十字相乘法、分组分解法、求 根法等(初中没有)根法等(初中没有). 22 24 32 9134 yxyx xx 案例:案例:关于关于x的二次三项式的二次三项式ax2+bx+c(a0)的因式

6、分解的因式分解 观察观察:x23x2(x1)()(x2); x2x 2(x 1)()(x2); 问题问题1:如何将:如何将 x2x 1分解因式?分解因式? 探索:对探索:对x23x2(x1)()(x2)中,)中, 1和和2是方程是方程x23x20的根的根. 类似地类似地 ,设,设x2x 1 0,得到,得到 , 2 51 , 2 51 21 xx ). 2 51 )( 2 51 (1 2 xxxx所以 问题问题2:如何将如何将 2x23x 1分解因式?分解因式? 探索:可以进行变形:探索:可以进行变形: , 再转化为二次项系数为再转化为二次项系数为1的情形的情形. ) 2 1 2 3 (2132

7、 22 xxxx 问题问题3:如何将关于:如何将关于x的二次三项式的二次三项式ax2+bx+c(a0) 的分解因式?的分解因式? 探索:设探索:设ax2+bx+c0,两根为,两根为x1、x2, , 所以所以ax2+bx+c a(x x1)()(x x2). 说明:(说明:(1)注意)注意“a”不能少;不能少; (2)能在实数范围分解的条件是方程有实数解)能在实数范围分解的条件是方程有实数解. 一元二次方程的根的判别式和根与系数关系一元二次方程的根的判别式和根与系数关系 学生现状学生现状:初中学过一元二次方程的解 法,知道判别式,没有学过根与系数 的关系. 对它们的应用认识有一定的困难. 案例:

8、案例:一元二次方程的根的判别式和根与系数关系一元二次方程的根的判别式和根与系数关系 1.问题提出:问题提出: 若一元二次方程若一元二次方程ax2bxc0(a0)有两个实)有两个实 数根数根: 观察观察x1x2、x1x2、x1x2 、 的结果,有什么特的结果,有什么特 点?点? . 2 4 , 2 4 2 2 2 1 a acbb x a acbb x 2 1 x x 2.学生活动,建构数学学生活动,建构数学 , 4 2 21 a acb xx . 4 4 2 2 2 1 acbb acbb x x , 21 a b xx , 21 a c xx 设设ax2+bx+c0,两根为,两根为x1、x2

9、, ,则 则 ax2+bx+c a(x x1)()(x x2) ax2 a (x1+ x2 )x+a x1 x2, , 则则b a (x1+ x2 ),),c a x1 x2, ., 2121 a c xx a b xx所以 说明说明:(1)利用韦达定理时忽视方程有实数根的利用韦达定理时忽视方程有实数根的 前提前提; (2)没有形成用定理的意识;)没有形成用定理的意识; (3)对二次函数的学习和解析几何中知识的学习)对二次函数的学习和解析几何中知识的学习 有不利影响;有不利影响; (4)解方程时,利用韦达定理进行验根比较方便;)解方程时,利用韦达定理进行验根比较方便; (5)在教学时要控制难度

10、)在教学时要控制难度. 三元一次方程组三元一次方程组 学生现状学生现状:在初中学过了二元一次方程组 的解法,知道消元的基本方法。 在二次函数关系式的确定和圆的一般方程 的确定时需要利用三元一次方程组,建议 在上这部分内容前补充该内容. 平行线分线段成比例定理平行线分线段成比例定理 学生现状:学生现状:初中没有学过该定理,生源好 的学校可以补充. 对证明的认识对证明的认识 学生现状:初中图形的证明主要是让学生学生现状:初中图形的证明主要是让学生 感受证明的必要性,经历公理化的过程,感受证明的必要性,经历公理化的过程, 证明内容包括三角形、四边形,相似形、证明内容包括三角形、四边形,相似形、 圆的

11、有关证明都没有涉及圆的有关证明都没有涉及. 现在要让学生理解证明内涵的扩充现在要让学生理解证明内涵的扩充. 例:求证函数例:求证函数f(x)2x1是定义域上的是定义域上的 单调减函数单调减函数.(或证明函数的奇偶性等)(或证明函数的奇偶性等) (利用代数式的恒等变形、不等式性质、等(利用代数式的恒等变形、不等式性质、等 式性质等)式性质等) 绝对值不等式绝对值不等式 学生现状:学生现状:初中学过了一元一次不等式, 但对不等式的性质认识很不到位. 例:解不等式例:解不等式x1 5. 说明:说明:(1)对对“”认识;认识; (2)分类讨论后求解集有问题;)分类讨论后求解集有问题; (3)可以利用几何意义解题;)可以利用几何意义解题; (4)利用绝对值的意义解题)利用绝对值的意义解题.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中 > 数学 > 初高中衔接
版权提示 | 免责声明

1,本文(关于初高中衔接的教学建议.ppt)为本站会员(四川天地人教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|