1、18.218.2 特殊的平行四边形特殊的平行四边形18.2.118.2.1 矩形矩形第第 1 1 课时课时 矩形的性质矩形的性质【知识与技能】1.了解矩形的定义, 理解矩形的性质, 知道矩形与平行四边形的区别于联系.2.掌握直角三角形斜边上的中线的性质,会进行有关的计算和证明.【过程与方法】在观察、探究、归纳、推理论证等活动过程中,加深学生对知识的理解和掌握,锻炼分析问题、解决问题的能力,增强数学应用意识.【情感态度与价值观】在观察、探究、归纳、推理论证等活动过程中增强逻辑推理能力,发展数学思维.【教学重点】矩形的性质及其推论.【教学难点】矩形性质的应用.一、知识回顾1. 平行四边形有哪些性质
2、?2. 我们都知道三角形具有稳定性,平行四边形也具有稳定性吗?二、情境导入,初步认识观察思考,如图(1)将两长两短的四根木条用小钉铰合在一起,使等长的木条成为对边,这样就得到一个平行四边形,即ABCD;推动这个四边形,在推动这个平行四边形的过程中,什么发生了变化?什么没变?当使 ABBC时如图 (2) , 就得到一个特殊的平行四边形, 你能说出这时平行四边形 ABCD是什么图形吗?与同伴交流.【教学说明】教师展示准备好的用木条做成的平行四边形框架,转动这个平行四边形,让学生观察角的变化.当一个角变为直角时,所得到的图形是矩形.让学生感知矩形是一种特殊的平行四边形,引入新课.三、思考探究,获取新
3、知(一)矩形的性质矩形的定义:有一个角是直角的平行四边形叫做矩形,也叫长方形.矩形是轴对称图形,它有两条对称轴,分别是连接对边中点的直线;矩形具有平行四边形的所有性质,即矩形的对角相等,对边平行且相等,对角线互相平分.想一想想一想1. 矩形是常见的图形,生活中很多物品都有矩形的形象。你能举出一些例子吗?2.矩形除了具有平行四边形的所有性质外, 还有哪些特殊性质呢?与同伴交流.【教学说明】 老师可引导学生通过矩形的边、 角、 对角线三个方面进行思考,从而猜想矩形的性质.猜想 1:矩形的四个角都是直角猜想 2:矩形的对角线相等.【教学说明】老师让学生自己证明这两个命题,然后请学生代表与全班同学分享
4、自己的想法思路,最后教师展示规范的证明过程,从而证明矩形的性质.矩形的特殊性质矩形的特殊性质从角上看:矩形的四个角都是直角从边上看:矩形的对角线相等.四、典例精析,掌握新知例例 1 1如图,矩形 ABCD 的对角线相交于点 O,AOB=60,AB=4cm,求矩形的对角线的长.解:四边形 ABCD 是矩形,AC 与 BD 相等且互相平分.OA=OB.又AOB=60,AOB 是等边三角形.OA=AB=4cm矩形的对角线长 AC=BD=2OA=8cm.练习1.矩形具有而一般平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角互补D.对角线互相平分2.矩形 ABCD 对角线 AC,BD 相
5、交于点 O,AB=5cm,BC=12cm,则ABO 的周长等于_ .(二)直角三角形斜边上中线的性质(二)直角三角形斜边上中线的性质思考思考如图,矩形 ABCD 中,对角线 AC、BD 相交于 O,则有 OA=OB=OC=OD.如果擦去图中线段 AD,OD,CD,你能发现什么有趣的结论?说说看.【教学说明】在学生得到 OB=OA=OC 后,教师应引导学生将这一结论用文字表述清楚.【归纳结论】直角三角形斜边上的中线等于斜边的一半.四、运用新知,深化理解1.直角三角形中, 两直角边长分别为12和 5, 则斜边的中线长是 ()A.26B.13C.8.5D.6.52.如图,在 RtABC 中,A=30
6、,ACB=90.点 D 是 AB 边的中点.试判断BCD 的形状,并说明理由.【教学说明】学生独立作业,教师巡视,适时予以点拨.第 2 题,可引导学生先得出AOB 形状为等边三角形,再得出 AB=AO=2OF=8cm,即可求出.AOBC【答案】1.D2.解:BCD 为等边三角形.理由如下:ACB=90,点 D 是 AB 的中点,CD= AB=BD在 RtABC 中,A=30,B=90-A=60.在CBD 中,CD=BD,B=60,BCD 为等边三角形.五、师生互动,课堂小结通过这节课的学习你有哪些收获?1. 课后习题 18.1 第 1,4,9 题;2.如图,在矩形 ABCD 中,连接对角线 AC、BD,将ABC沿 BC 方向平移,使点 B 移到点 C,得到DCE.(1) 求证:EDCACD;(2)请探究BDE的形状,并说明理由。学生在小学阶段已经学习了长方形的相关知识,而矩形就是长方形,所以学生对矩形的基本知识已经有一定的了解, 而且有前一节探究平行四边形有关知识作为基础,学生已具有一定的独立思考和探究的能力.所以本节课主要在学生已有的认知水平上,在实际问题情景中,由学生自主探索发现矩形的性质定理,使学生经历实践、推理、交流等数学活动过程,亲身体验数学思想方法,促进学生能力的提高.