1、10.1 随机事件与概率(精练)【题组一 有限样本空间与随机事件】1(2020全国高一课时练习)下列事件是必然事件的是( )A连续两次掷一枚硬币,两次都出现正面向上B异性电荷相互吸引C在标准大气压下,水在1时结冰D任意掷一枚骰子朝上的点数是偶数2(2020全国高一课时练习)下列事件中,是必然事件的是( )A对任意实数x,有x20B某人练习射击,击中10环C从装有1号,2号,3号球的不透明的袋子中取一球是1号球D某人购买彩票中奖3(2021全国高一课时练习)关于样本点、样本空间,下列说法错误的是( )A样本点是构成样本空间的元素B样本点是构成随机事件的元素C随机事件是样本空间的子集D随机事件中样
2、本点的个数可能比样本空间中的多4(2020全国高一课时练习)一个家庭有两个小孩,把第一个孩子的性别写在前边,第二个孩子的性别写在后边,则所有的样本点有( )A(男,女),(男,男),(女,女)B(男,女),(女,男)C(男,男),(男,女),(女,男),(女,女)D(男,男),(女,女)5(2021全国高一课时练习)指出下列事件是必然事件、不可能事件还是随机事件:(1)某人购买福利彩票一注,中奖万元;(2)三角形的内角和为;(3)没有空气和水,人类可以生存下去;(4)同时抛掷两枚硬币一次,都出现正面向上;(5)从分别标有、的四张标签中任取一张,抽到1号标签;(6)科学技术达到一定水平后,不需任
3、何能量的“永动机”将会出现6(2020全国高一课时练习)在所有考试中,小明同学的语文、数学、英语这三科的成绩都是优秀或良好,随机抽取一次考试的成绩,记录小明同学的语文,数学,英语这三科成绩的情况.(1)写出该试验的样本空间;(2)用集合表示下列事件:A=“至少有两科成绩为优秀”;B=“三科成绩不都相同”7(2020全国高一课时练习)如图,一个电路中有A,B,C三个电器元件,每个元件可能正常,也可能失效,把这个电路是否为通路看成是一个随机现象,观察这个电路中各元件是否正常.(1)写出试验的样本空间;(2)用集合表示下列事件:M=“恰好两个元件正常”;N=“电路是通路”;T=“电路是断路”8(20
4、20全国高一课时练习)如图,由A,B两个元件分别组成串联电路(图(1)和并联电路(图(2),观察两个元件正常或失效的情况.(1)写出试验的样本空间;(2)对串联电路,写出事件M=“电路是通路”包含的样本点;(3)对并联电路,写出事件N=“电路是断路”包含的样本点.9(2020全国高一课时练习)连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面.(与先后顺序有关)(1)写出这个试验的样本空间及样本点的个数;(2)写出事件“恰有两枚正面向上”的集合表示.10(2020全国高一课时练习)从0,1,2这3个数字中,不放回地取两次,每次取一个,构成有序数对,其中x为第1次取到的数字,y为第2次取到的数
5、字.(1)写出样本空间;(2)写出“第1次取出的数字是2”这一事件的集合表示.11(2021全国高一课时练习)从含有两件正品和一件次品的3件产品中每次任取1件,每次取出后不放回,连续取两次.(1)写出这个试验的样本空间;(2)下列随机事件由哪些样本点构成:事件A:取出的两件产品都是正品;事件B:取出的两件产品恰有1件次品.【题组二 事件的关系和运算】1(2020全国高一课时练习)在试验“连续抛掷一枚硬币3次,观察落地后正面、反面出现的情况”中,设事件A表示随机事件“第一次出现正面”,事件B表示随机事件“3次出现同一面”,事件C表示随机事件“至少1次出现正面”.(1)试用样本点表示事件,;(2)
6、试用样本点表示事件,;(3)试判断事件A与B,A与C,B与C是否为互斥事件.2(2020全国高一课时练习)抛掷一颗质地均匀的骰子,有如下随机事件:=“点数为i”,其中;=“点数不大于2”,=“点数大于2”,=“点数大于4”;E=“点数为奇数”,F=“点数为偶数”.判断下列结论是否正确.(1)与互斥;(2),为对立事件;(3);(4);(5),;(6);(7);(8)E,F为对立事件;(9);(10)3(2020全国高一课时练习)一个袋子中有大小和质地相同的4个球,其中有有2个红色球(标号为1和2),2个绿色球(标号为3和4),从袋中不放回地依次随机摸出2个球.设事件=“第一次摸到红球”,=“第
7、二次摸到红球”,R=“两次都摸到红球”,G=“两次都摸到绿球”,M=“两个球颜色相同”,N=“两个球颜色不同”.(1)用集合的形式分别写出试验的样本空间以及上述各事件;(2)事件R与,R与G,M与N之间各有什么关系?(3)事件R与事件G的并事件与事件M有什么关系?事件与事件的交事件与事件R有什么关系?4(2020全国高一课时练习)抛掷一枚质地均匀的骰子,记事件“出现的点数是1或2”,事件“出现的点数是2或3或4”,则事件“出现的点数是2”可以记为( )ABCD5(2020全国高一课时练习)打靶3次,事件“击中发”,其中.那么表示( )A全部击中B至少击中1发C至少击中2发D全部未击中6(202
8、0全国高一课时练习)一批产品共有100件,其中5件是次品,95件是合格品.从这批产品中任意抽取5件,现给出以下四个事件:事件A:恰有一件次品;事件B:至少有两件次品;事件C:至少有一件次品;事件D:至多有一件次品.并给出以下结论:;是必然事件;.其中正确结论的序号是( )ABCD【题组三 互斥与对立】1(2020全国高一课时练习)袋内分别有红白黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A至少有一个白球;都是白球B至少有一个白球;至少有一个红球C恰有一个白球;一个白球一个黑球D至少有一个白球;红黑球各一个2(2020全国高一课时练习)一个人打靶时连续射击两次,事件“至少有一
9、次中靶”的互斥事件是( )A两次都不中靶B两次都中靶C只有一次中靶D至多有一次中靶3(2021全国高一课时练习)一个均匀的正方体玩具的各个面上分别标有数字1,2,3,4,5,6.将这个玩具向上抛掷一次,设事件表示向上的一面出现奇数点,事件表示向上的一面出现的点数不超过3,事件表示向上的一面出现的点数不小于4,则( )A与是互斥而非对立事件B与是对立事件C与是互斥而非对立事件D与是对立事件4(2020全国高一课时练习)一袋中装有除颜色外完全相同的5个白球,3个黄球,从中有放回地摸球,用表示第一次摸得黄球,表示第二次摸得白球,则事件与( )A是相互独立事件B不是相互独立事件C是互斥事件D是对立事件
10、5(2021全国高一课时练习)从装有完全相同的4个红球和2个黄球的盒子中任取2个小球,则互为对立事件的是( )A“至少一个红球”与“至少一个黄球”B“至多一个红球”与“都是红球”C“都是红球”与“都是黄球”D“至少一个红球”与“至多一个黄球”6(2020全国高一课时练习)如果事件A,B互斥,记,分别为事件A,B的对立事件,那么( ).A 是必然事件B是必然事件C与一定互斥D与一定不互斥7(2020全国高一课时练习)把红、黄、蓝、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是A对立事件B互斥但不对立事件C不可能事件D以上都不对8(2021全国高一课
11、时练习)一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是A两次都中靶 B至少有一次中靶C两次都不中靶 D只有一次中靶9(2020全国高一课时练习)从装有3个红球和3个白球的口袋里任取3个球,那么互斥而不对立的两个事件是( )A至少2个白球,都是红球B至少1个白球,至少1个红球C至少2个白球,至多1个白球D恰好1个白球,恰好2个红球10(2020全国高一课时练习)将一枚质地均匀的骰子向上抛掷1次.设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则( )AA与B是互斥而非对立事件BA与B是对立事件CB与C是互斥而非对立事
12、件DB与C是对立事件【题组四 古典概型】1(2020全国高一课时练习)某袋中有编号为1,2,3, 4,5,6的6个小球(小球除编号外完全相同),甲先从袋中摸出一个球,记下编号后放回,乙再从袋中摸出一个球,记下编号,则甲、乙两人所摸出球的编号不同的概率是( )ABCD2(2020全国高一课时练习)在长分别为1cm、2cm、3cm、4cm的四条线段中,任取三条,这三条线段能构成三角形的概率为( )ABCD3(2021全国高一课时练习)为了解一种植物果实的情况,随机抽取一批该植物果实样本测量重量(单位:克),按照分为5组,其频率分布直方图如图所示(1)求图中a的值;(2)估计这种植物果实重量的平均数
13、和方差(同一组中的数据用该组区间的中点值作代表);(3)已知这种植物果实重量不低于32.5克的即为优质果实若所取样本容量,从该样本分布在和的果实中,随机抽取2个,求抽到的都是优质果实的概率4(2020全国高一课时练习)某大学为调研学生在,两家餐厅用餐的满意度,在,两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以10为组距分成6组:,得到餐厅分数的频率分布直方图,和餐厅分数的频数分布表:B餐厅分数频数分布表分数区间频数0,10)210,20)320,30)530,40)1540,50)4050,6035(1)在抽样的100人中,求对
14、餐厅评分低于30的人数;(2)从对餐厅评分在范围内的人中随机选出2人,求2人中恰有1人评分在范围内的概率;(3)求学生对A餐厅评分的平均数.5(2020全国高一课时练习)由于受疫情的影响,某国某市的一个小区505人参加某次核酸检测,根据年龄段使用分层抽样的方法从中随机抽取101人,记录其核酸检测结果(阴性或阳性).现将核酸检测呈阴性的人员,按年龄段分为5组:(0,20,(20,40,(40,60,(60,80,(80,100,得到如图所示频率分布直方图,其中年龄在(20,40的有20人.(1)估计核酸检测呈阴性人员的年龄的中位数;(2)用样本估计该小区此次核酸检测呈阳性的人数;(3)若此次核酸
15、检测呈阳性的人中,男女比例为3:2,从中任选两人,求至少选到一名男性的概率6(2020全国高一课时练习)海关对同时从三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示,工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测地区ABC数量/件50150100(1)求这6件样品中来自A,B,C三个地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率【题组五 概率的基本性质】1(2020吴起高级中学)气象台预报“本市明天降雨概率是70%”,下列说法正确的是( )A本市明天将有70%的地区降雨B本市有天将有
16、70%的时间降雨C明天出行不带雨具淋雨的可能性很大D明天出行不带雨具肯定要淋雨2(2021全国高一课时练习)某种彩票中奖的概率为,这是指A买10000张彩票一定能中奖B买10000张彩票只能中奖1次C若买9999张彩票未中奖,则第10000张必中奖D买一张彩票中奖的可能性是3(2020全国高一课时练习)抛掷一个质地均匀的骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“不小于5的点数出现”,则一次试验中,事件A或事件B至少有一个发生的概率为( )ABCD4(2020全国高一课时练习)柜子里有3双不同的鞋,分别用表示6只鞋,如果从中随机地取出2只,那么(1)写出试验的样本空间;(2)求下
17、列事件的概率,并说明它们的关系;A=“取出的鞋不成双”B=“取出的鞋都是左脚的”;C=“取出的鞋都是一只脚的”;D=“取出的鞋子是一只左脚一只右脚的,但不是一双鞋”.5(2020全国高一课时练习)有一批货物需要用汽车从城市甲运至城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如下表:所用的时间/h10111213通过公路1的频数20402020通过公路2的频数10404010(1)为进行某项研究,从所用时间为12h的60辆汽车中随机抽取6辆.()若用分层随机抽样的方法抽取,求从通公路1和公路
18、2的汽车中各抽取几辆;()若从()的条件下抽取的6辆汽车中,再任意抽取2辆汽车,求这2辆汽车至少有1辆通过公路1的概率.(2)假设汽车只能在约定时间的前11h出发,汽车只能在约定时间的前12h出发.为了尽最大可能在各自允许的时间内将货物从城市甲运到城市乙,汽车和汽车应如何选择各自的道路?6(2020全国高一课时练习)从甲地到乙地沿某条公路行驶一共200公里,遇到红灯个数的概率如下表所示:红灯个数0123456个及6个以上概率0.020.10.350.20.10.03(1)求表中字母的值;(2)求至少遇到4个红灯的概率;(3)求至多遇到5个红灯的概率.7(2020全国高一课时练习)深夜,一辆出租
19、车被牵涉进一起交通事故,该市有两家出租车公司红色出租车公司和蓝色出租车公司,其中蓝色出租车公司和红色出租车公司分别占整个城市出租车的85%和15%.据现场目击证人说,事故现场的出租车是红色的,并对证人的辨别能力进行了测试,测得他辨认的正确率为80%,于是警察就认定红色出租车具有较大的肇事嫌疑.请问警察的认定对红色出租车公平吗?试说明理由.8(2020全国高一课时练习)一天,甲拿出一个装有三张卡片的盒子(一张卡片的两面都是绿色,一张卡片的两面都是蓝色,还有一张卡片一面是绿色,另一面是蓝色),跟乙说玩一个游戏,规则是:甲将盒子里的卡片顺序打乱后,由乙随机抽出一张卡片放在桌子上,然后卡片朝下的面的颜
20、色决定胜负,如果朝下的面的颜色与朝上的面的颜色一致,则甲赢,否则甲输.乙对游戏的公平性提出了质疑,但是甲说:“当然公平!你看,如果朝上的面的颜色为绿色,则这张卡片不可能两面都是蓝色,因此朝下的面要么是绿色,要么是蓝色,因此,你赢的概率为,我赢的概率也是,怎么不公平?”分析这个游戏是否公平.9(2020全国高一课时练习)下面的三个游戏都是在袋子中装球,然后从袋子中不放同地取球,分别计算三个游戏中甲获胜的概率,你认为哪个游戏是公平的?游戏1游戏2游戏3袋子中球的数量和颜色1个红球和1个白球2个红球和2个白球3个红球和1个白球取球规则取1个球依次取出2个球依次取出2个球获胜规则取到红球甲胜两个球同色甲胜两个球同色甲胜取到白球乙胜两个球不同色乙胜两个球不同色乙胜