1、小结与复习第八章 二元一次方程组(二元或三元一次方程组的解)知识网络 设未知数,列方程组 解方程组检验代入法加减法(消元)专题复习【例1】若x2m-1+5y3n-2m=7是二元一次方程,则m= , n= . 由二元一次方程的定义可得:2m- -1=1,3n-2m=1,解得:m=1,n=1.解析:专题一 二元一次方程与二元一次方程组11【迁移应用1】已知方程(m-3) +(n+2) =0是关于x、y的二元一次方程,求m、n的值.解:由题可得:|n| - -1=1,m3,m2- -8=1,n - -2. 解得:m=-3,n=2.【归纳拓展】首先理解二元一次方程或二元一次方程组定义的几大因素,并且通
2、过定义得到需要的等式,由等式得到最后的求解.1nx82my【例2】已知x=1,y=-2是二元一次方程组 的 解,求a,b的值.ax-2y=3,x-by=4解:把x=1,y=-2代入二元一次方程组得a+4=3,1+2b=4, 解得:a=-1,b=1.5.专题二 二元一次方程与二元一次方程组的解【归纳拓展】一般情况下,提到二元一次方程(组)的解,须先把解代入二元一次方程(组),得到解题需要的关系式,然后解关系式,即可解决问题.【迁移应用2】已知x=1,y=-2满足(ax-2y-3)2+ |x-by+4 |=0,求a+b的值.解:由题意可得: 把x=1,y=2代入上式 可得: 解得:a=-1,b=-
3、2.5,则a+b=-3.5.ax- -2y- -3=0,x- -by+4=0.a+4=3,1+2b=-4,【例3】用代入法消元法解方程组3x-y=7,5x+2y=8.解:3x-y=7, 5x+2y=8 ,由可得y=3x-7 , 由代入得 5x+2(3x-7)=8,解得x=2,把x=2代入得 y=-1.由此可得二元一次方程组的解是x=2,y=-1.专题三 代入消元法与加减消元法【例4】用加减消元法解方程组3(x-1)=4(y-4),5(y-1)=3(x+5).解:化简整理得3x-3=4y-16, 3x+15=5y-5 , 由- -得得 18=y+11,解得y=7,把y=7代入得 3x=28-16
4、+3,解得解得x=5.由此可得二元一次方程组的解为x=5, y=7.【归纳拓展】代入法消元法是将其中的一个方程写成“y=”或“x=”的形式,并把它代入另一个方程,得到一个关于x或y的一元一次方程求得x或y值.加减消元法是通过两个方程两边相加(或相减)消去一个未知数,把二元一次方程组转化为一元一次方程.【迁移应用3】 已知-4xm+nym-n与-2x7-my1+n是同类项,求m,n的值.解:m=3,n=1.【迁移应用4】 已知方程组 的解为 则求6a-3b的值.ax-by=4,ax+by=8x=2,y=2,解:6a- -3b的值为15. 提示:a=3,b=1.【例5】某汽车运输队要在规定的天数内
5、运完一批货物,如果减少6辆汽车则要再运3天才能完成任务;如果增加4辆汽车,则可提前一天完成任务,那么这个汽车运输队原有汽车多少辆?原规定运输的天数是多少?分析:等量关系式: 减少6辆汽车后运输的货物=原规定运输货物; 增加4辆汽车后运输的货物=原规定的货物。专题四 二元一次方程组的实际应用解:设这个汽车运输队原有汽车x辆,原规定完成的天数为y天.根据题意可得 化简整理得:(x-6)(y+3)=xy,(x+4)(y-1)=xy.3x-6y=18, -x+4y=4 ,由可得x=4y-4 , 把代入可得 3(4y-4)-6y=18,解得y=5. 把y=5代入得 x=16. 由此可得x=16,y=5.
6、答:原有汽车16辆,原规定完成的天数为5天.【归纳拓展】利用方程的思想解决实际问题时,1.首先要找准等量关系式,找等量关系式前要注意题干 中提到的等量关系的语句,2.根据等量关系列得方程, 主要步骤是“找”“设”“列”“解”“答”,一步 都不能少.解:设该年级寄宿学生有x人,宿舍有y间.根据题意可得 解得6y+4=x,7(y- -11- -1)=x- -3,x=514,y=85.答:设该年级寄宿学生有514人,宿舍有85间.【迁移应用5】某校七年级安排宿舍,若每间宿舍住6人,则有4人住不下,若每间住7人,则有1间只住3人,且空余11间宿舍,求该年级寄宿学生有多少人?宿舍有多少间?课堂小结1.二
7、元一次方程(组)的定义及解的定义2.二元一次方程组的解法3.二元一次方程组的应用1.下列方程是二元一次方程的是( ) A.xy+8=0 B. C.x2-2x-4=0 D.2x+3y=72.已知x=2,y=1是方程kx-y3的解,则k .3.已知方程x-2y4,用含x的式子表示y为_; 用含y的式子表x为_.课后训练1123xyD242xyx=2y+44.方程组 中,x与y的和为12,求k的值.23352xykxyk,264xkyk, 解:k=14 (提示: )5.A、B两地相距36千米.甲从A地出发步行到B地,乙从B地出发步行到A地.两人同时出发,4小时相遇,6小时后,甲所余路程为乙所余路程的2倍,求两人的速度.解:设甲、乙的速度分别为x千米/小时和y千米/小时.依题意可得:4436422(42 )xyyxxy,解得45.xy, 答:甲、乙的速度分别为4千米/小时和5千米/小时.