1、优秀领先 飞翔梦想 成人成才 27.2.2 相似三角形的性质 教学目标:知识与技能1、理解掌握相似三角形周长比、面积比与相似比之间的关系;掌握定理的证明方法。2、灵活运用相似三角形的判定和性质,提高分析,推理能力。过程与方法:1、对性质定理的探究经历观察猜想论证归纳的过程,培养学生主动探究、合作交流的习惯和严谨治学的态度。2、通过实际情境的创设和解决,使学生逐步掌握把实际问题转化为数学问题,复杂问题转化为简单问题的思想方法。3、通过例题的拓展延伸,体会类比的数学思想,培养学生大胆猜想、勇于探索、勤于思考的数学品质,提高分析问题和解决问题的能力。情感与态度:在学习和探讨的过程中,体验特殊到一般的
2、认知规律;通过学生之间的交流合作,在合作中体验成功的喜悦,树立学习的自信心;通过对生活问题的解决,体会数学知识在实际中的广泛应用。教学重点:相似三角形性质定理的探索及应用教学难点:综合应用相似三角形的性质与判定探索三角形中面积之间的关系教学方法与手段:探究式教学、小组合作学习、多媒体教学教学过程:一、创设情境,引入新课1、我们已经学了相似三角形的哪些性质?2、问题情境:某施工队在道路拓宽施工时遇到这样一个问题,马路旁原有一个面积为100平方米、周长为80米的三角形绿化地,由于马路拓宽绿地被削去了一个角,变成了一个梯形,原绿化地一边AB的长由原来的30米缩短成18米。现在的问题是:被削去的部分面
3、积有多少?周长是多少?你能解决这个问题吗?二、实践交流,探索新知1、看一看:ABC与ADE有什么关系?为什么?2、算一算:ABC与ADE的相似比是多少?ABC与ADE的周长比是多少?面积比是多少?3、想一想:你发现上面两个相似三角形的周长比和相似比有什么关系?面积比与相似比又有什么关系?4、验一验:是不是任何两个相似三角形都有此关系呢?你能加以验证吗?5、在学生思考、讨论的基础上给出证题过程(多媒体)6、归纳小结;相似三角形性质定理:相似三角形的周长比等于相似比,面积比等于相似比的平方。三、基础训练,加深理解练一练:已知两个三角形相似,请完成下列表格:相似比2周长比面积比10000归纳:周长比
4、等于相似比;已知相似比、周长比,求面积比要平方,已知面积比求相似比或周长比则要平方。四、综合应用,解决问题已知:如图,DEBC,AB=30m,BD=18m,ABC的周长为80m,面积为100m2,求ADE的周长和面积?五、拓展延伸,共同提高1、 过E作EFAB交BC于F,其他条件不变,则EFC的面积等于多少?平行四边形BDEF的面积为多少?2、 若设SABC=S,SADE=S1,SEFC=S2,试猜想:S与S1、S2之间存在怎样的关系?六、类似猜想,深入探究探究:如图,DEBC,FGAB,MNAC,且DE、FG、MN交于点P,若设SDMP=S1,SPEF=S2,SGNP=S3,SABC=S,S
5、与S1、S2、S3之间是否也有类似结论?猜想并加以论证。七、回顾反思,畅谈心得本节课你有何收获?1、这节课我们学到了哪些知识?2、我们是用哪些方法获得这些知识的?3、通过本节课的学习,你有没有新的想法或发现?你觉得还有什么问题需要继续讨论吗?八、布置作业1、作业本2、3(2)(3)、4、52、探究推理过程课外整理完成,各组自行组织讨论交流。教学设计说明:1、本节课从一个较为实际的生活情境引入,设置问题悬念,激发学生的求知欲望,使学生掌握将实际问题转化为数学问题的思想方法,感受数学知识在生活中的广泛应用。2、性质定理2的学习和探索,注重于知识的形成过程,使学生体验特殊到一般的认知规律,以及由观察猜想论证归纳的数学思维过程。3、由问题的解决变式到例题,再经例题加以拓展延伸,使本节内容衔接更趋自然,同时使学生充分体会类比的数学思想以及图形之间的互相联系。4、教学中注重小组之间的合作交流,在合作中加强学生的团体意识,体验成功的喜悦,树立学习的自信心。第 3 页 共 3 页