1、2.2.2高二数学选择性必修第一册 第二章 直线和圆的方程学习目标1.掌握直线的两点式方程的形式、特点及适用范围. 2.了解直线的截距式方程的形式、特点及适用范围 过程.3.会用中点坐标公式求两点的中点坐标.4.核心素养:数学运算、直观想象、逻辑推理. y=kx+b y- y0 =k(x- x0 )k为斜率, P0(x0 ,y0)为直线上的一定点 k为斜率,b为截距一、回顾旧知1. 直线的点斜式方程:2. 直线的斜截式方程: 解:设直线方程为:y=kx+b1.思考:已知直线经过P1(1,3)和P2(2,4)两点, 如何求直线的方程342kbkb 由已知得:12kb解方程组得:所以:直线方程为:
2、 y=x+2一般做法方程思想二、探究新知为什么可以这样做,这样做的根据是什么?2.还有其他做法吗?02) 1(123431234 - - - - - - - - - yxxyk化简可得再由直线的点斜式方程由斜率公式得到斜率34 312 1yx-即:即: 得得: y=x+2 设P(x,y)为直线上不同于P1 , P2的动点,与P1(1,3)P2(2,4)在同一直线上,根据斜率相等可得:211ppppkk 已知两点P1 ( x1 , y1 ),P2(x2 , y2),求通过这两点的直线方程解:设点P(x,y)是直线上不同于P1 , P2的点NoImage可得直线的两点式方程:211121yyxxy
3、yxx- -kPP1= kP1P2记忆特点: 1).左边全为y,右边全为x2).两边的分母全为常数 3).分子,分母中的减数相同1112122121(,)y yx xx x y yy yx x-3.直线的两点式方程不是! 121121yyyyxxxx- - 是不是已知任一直线中的两点就能用两点式 写出直线方程呢? 两点式不能表示平行于坐标轴或与 坐标轴重合的直线注意: 当x1 x2或y1= y2时,直线P1 P2没有两点式方程.(因为x1 x2或y1= y2时,两点式的分母为零,没有意义) 那么两点式不能用来表示哪些直线的方程呢?两点式适用于与两坐标轴不垂直的直线.思考: 若点若点P1 (x1
4、 , y1 ),P2( x2 , y2)中有中有x1 x2,或或 y1= y2,此时过这两点的直线方程是什么此时过这两点的直线方程是什么?当当x1 x2 时方程为:时方程为: x x当当 y1= y2时方程为:时方程为: y = y000-yxaba x x l B(0,b) B(0,b) A A(a,0) Oy y将A(a,0),B(0,b)代入两点式得:1.xyab即1.例1. 已知直线l与x轴的交点为A(a,0),与y轴的交点为B(0,b)其中a0,b0,求这条直线l的方程.三、巩固新知2.直线的截距式方程1 .xyab直线方程由直线在x轴和y轴的截距确定,所以叫做直线方程的截距式方程.
5、在y轴上的截距在x轴上的截距截距式适用于横、纵截距都存在且都不为0的直线. 已知角形的三个顶点是A(5,0),B(3,3),C(0,2),求BC边所在的直线方程,以及该边上中线的直线方程.解:过B(3,-3),C(0,2)两点式 方程为:203230yx- - - -整理得:5x+3y-6=0这就是BC边所在直线的方程.2. 例4:y yx xo oA AC CB B中点坐标公式:则121222xxxyyy 若P1 ,P2坐标分别为( x1 ,y1 ), (x2 ,y2),且中点 M的坐标为(x, y).B(3,-3),C(0,2) M 3032(,)22- - 即 M 31( ,)22- -
6、1212,22xxyyxy BC边上的中线是顶点A与BC边中点M所连线段,由中点坐标公式可得点M的坐标为:31,22M- -即整理得:x+13y+5=0这就是BC边上中线所在的直线的方程.05130522yx- - 过A(-5,0),M 的直线方程31,22- -My yx xo oA AC CB B解:当截距均为0时,设方程为y=kx,4,5k -把P(-5,4)代入上式得即直线方程为4.5yx - 当截距均不为0时,设直线方程为1,xyaa把P(-5,4)代入上式得1.a -直线方程为1,xy- -即10.xy 综上直线方程为 或45yx -10.xy 求经过点P(-5,4),且在两坐标轴
7、上的截距相等的直线方程.3. 例5:12 ab直线ax+by=1 (ab0)与两坐标轴围成的面积是_.4. 变式:直线方程名称直线方程形式 适用范围 点斜式 斜截式 两点式 截距式)(00 xxkyy-121121xxxxyyyy-1byax不垂直x轴不垂直x轴不垂直两个坐标轴不垂直两个坐标轴且不经过原点bkxy5.直线方程的适用范围1.1.直线的两点式方程直线的两点式方程 2.2.截距式方程截距式方程 1byax1112122121(,)yyx xxx yyyyxx-两点式适用于与两坐标轴不垂直的直线两点式适用于与两坐标轴不垂直的直线.截距式适用于横、纵截距都存在且都不为截距式适用于横、纵截距都存在且都不为0 0的直线的直线. .3.3.中点坐标公式中点坐标公式1212,)22xxyy(四、课堂小结作业: 课本P67 习题2.2 3,4题