1、1.4.2 用空间向量研究距离、夹角问题(2) 本节课选自2019人教A版高中数学选择性必修第一册第一章空间向量与立体几何,本节课主要学习运用空间向量解决计算空间角问题。在向量坐标化的基础上,将空间中线线角、线面角及二面角问题,首先转化为向量语言,进而运用向量的坐标表示,从而实现运用空间向量解决空间角问题,为学生学习立体几何提供了新的方法和新的观点,为培养学生思维提供了更广阔的空间。课程目标学科素养A.理解两异面直线所成角与它们的方向向量之间的关系,会用向量方法求两 异面直线所成角.B.理解直线与平面所成角与直线方向向量和平面法向量夹角之间的关系,会用向量方法求直线与平面所成角.C.理解二面角
2、大小与两个面法向量夹角之间的关系,会用向量方法求二面角的大小.1.数学抽象:向量语言表述空间角 2.逻辑推理:运用向量运算求解空间角的原理;3.数学运算:空间向量的坐标运算解决空间角问题.1.教学重点:理解运用向量方法求空间角的原理2.教学难点:掌握运用空间向量求空间角的方法多媒体教学中主要突出了几个方面:一是进一步突出运用向量法解决立体几何问题的基本程序,发展学生的数学建模思想和逻辑推理能力。二是典例解析,通过对典型问题的分析解决,帮助学生建立运用空间向量解决立体几何问题的基本思路。教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学过程真正成为学生的学习过程,以思维教学代替单纯的记忆教学。注意在探究问题时留给学生充分的时间, 使数学教学成为数学活动的教学。从而发展学生的直观想象、逻辑推理、数学建模的核心素养。