1、 10.1.4概率的基本性质导学案编写:廖云波 初审:孙锐 终审:孙锐 廖云波【学习目标】1.理解两个事件互斥、互为对立的含义.2.理解概率的6条基本性质,重点掌握性质3、性质4、性质6及其公式的应用条件.3.能灵活运用这几条重要性质解决相关的实际问题,培养数学建模和数学化归能力.【自主学习】知识点1 (1)对任意的事件A,都有P(A)0.(2)必然事件的概率为1,不可能事件的概率为0,即P()1,P()0.(3)如果事件A与事件B互斥,那么P(AB)P(A)P(B)(4)如果事件A与事件B互为对立事件,那么P(B)1P(A),P(A)1P(B)(5)如果AB,那么P(A)P(B)(6)设A,
2、B是一个随机试验中的两个事件,我们有P(AB)P(A)P(B)P(AB)【合作探究】探究一 互斥事件概率加法公式的应用【例1】某射手在一次射击训练中,射中10环,9环,8环,7环的概率分别为0.21,0.23,0.25,0.28,计算这个射手在一次射击中:(1)射中10环或7环的概率;(2)超过7环的概率分析先设出事件,判断是否互斥或对立,然后再使用概率公式求解解(1)设A“射中10环”,B“射中7环”,由于在一次射击中,A与B不可能同时发生,故A与B是互斥事件AB“射中10环或7环”故P(AB)P(A)P(B)0.210.280.49.所以射中10环或7环的概率为0.49.(2)设E“超过7
3、环”,则事件E“射中8环或9环或10环”,由(1)可知“射中8环”“射中9环”等彼此是互斥事件,所以P(E)0.210.230.250.69,所以超过7环的概率是0.69.归纳总结:对于一个较复杂的事件,一般将其分解成几个简单的事件,当这些事件彼此互斥时,原事件的概率等于这些事件概率的和.并且互斥事件的概率加法公式可以推广为:P(A1A2An)P(A1)P(A2)P(An).其使用的前提条件仍然是A1,A2,An彼此互斥.故解决此类题目的关键在于分解事件及确立事件是否互斥.【练习1】掷一枚均匀的正六面体骰子,设A表示事件“出现2点”,B表示“出现奇数点”,则P(AB)等于()A.B. C.D.
4、【答案】B解析:P(A),P(B),事件A与B互斥,由互斥事件的概率加法公式得P(AB)P(A)P(B).探究二 对立事件概率公式的应用【例2】甲、乙两人下棋,和棋的概率是,乙获胜的概率为,求:(1)甲获胜的概率;(2)甲不输的概率分析先设出事件,判断是否互斥或对立,然后再使用概率公式求解解(1)“甲获胜”可看成是“和棋或乙获胜”的对立事件,所以“甲获胜”的概率为1.(2)方法一:“甲不输”可看成是“甲获胜”“和棋”这两个互斥事件的并事件,所以P(甲不输).方法二:“甲不输”可看成是“乙获胜”的对立事件,所以P(甲不输)1,故甲不输的概率为.归纳总结:(1)只有当A,B互斥时,公式P(AB)P
5、(A)P(B)才成立;只有当A,B互为对立事件时,公式P(A)1P(B)才成立.(2)复杂的互斥事件概率的求法有两种:一是直接求解,将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率的加法公式计算;二是间接求解,先找出所求事件的对立事件,再用公式P(A)1P()求解.【练习2】从一箱产品中随机地抽取一件,设事件A“抽到一等品”,事件B“抽到二等品”,事件C“抽到三等品”已知P(A)0.65,P(B)0.2,P(C)0.1,则事件“抽到的不是一等品”的概率为()A0.20B0.39 C0.35D0.90【答案】C解析:抽到的不是一等品的对立事件是抽到一等品,而P(A)0.65
6、,抽到的不是一等品的概率是10.650.35.课后作业A组 基础题一、选择题1下列说法正确的是( )A事件A,B中至少有一个发生的概率一定比A,B中恰有一个发生的概率大B事件A,B同时发生的概率一定比A,B中恰有一个发生的概率小C互斥事件不一定是对立事件,对立事件一定是互斥事件D互斥事件一定是对立事件,对立事件不一定是互斥事件【答案】C解析:对于A,当A、B为对立事件时,A, B中至少有一个发生的概率和A,B中恰有一个发生的概率相等,故A错;对于B,若A、B是相等事件,此时A、B恰有一个发生为不可能事件,概率为0,故B错;C正确,D错误故选C.2围棋盒子中有多粒黑子和白子,已知从中取出2粒都是
7、黑子的概率为,都是白子的概率是.则从中任意取出2粒恰好是同一色的概率是( )A. B.C. D1【答案】C解析:设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“从中任意取出2粒恰好是同一色”为事件C.则P(A),P(B).由互斥事件的概率加法公式可得P(C)P(A)P(B).即从中任意取出2粒恰好是同一色的概率是,故选C.3若A,B是互斥事件,P(A)0.2,P(AB)0.5,则P(B)等于( )A0.3 B0.7C0.1 D1【答案】A解析:A,B是互斥事件,P(AB)P(A)P(B)0.5,P(A)0.2,P(B)0.50.20.3.故选A.4口袋内装有一些大小相同
8、的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是()A0.42B0.28C0.3D0.7【答案】C摸出黑球是摸出红球或摸出白球的对立事件,摸出黑球的概率是10.420.280.3,故选C5甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率是90%,则甲、乙两人下和棋的概率是()A60%B30% C10%D50%【答案】D“甲获胜”与“甲、乙下成和棋”是互斥事件,“甲不输”即“甲获胜或甲、乙下成和棋”,故P(甲不输)P(甲胜)P(甲、乙和棋),P(甲、乙和棋)P(甲不输)P(甲胜)90%40%50%.6从分别写有A,B,C,D,E的5张
9、卡片中任取2张,这2张卡片上的字母按字母顺序恰好是相邻的概率为()A B C D【答案】B试验的样本空间AB,AC,AD,AE,BC,BD,BE,CD,CE,DE,共有10 个样本点,其中事件“这2张卡片上的字母按字母顺序恰好是相邻的”包含4个样本点,故所求的概率为.7某射手的一次射击中,射中10环、9环、8环的概率分别为0.20,0.30,0.10.则此射手在一次射击中不够8环的概率为()A0.40B0.30 C0.60D0.90【答案】A不够8环的概率为10.200.300.100.40.8古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金”从
10、五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为()A B C D【答案】C试验的样本空间金木,金水,金火,金土,木水,木火,木土,水火,水土,火土,共10个样本点,事件“抽取的两种物质不相克”包含5个样本点,故其概率为.二、填空题8中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为,乙夺得冠军的概率为,那么中国队夺得女子乒乓球单打冠军的概率为 .【答案】解析:由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的
11、概率为.10甲、乙两人打乒乓球, 两人打平的概率是, 乙获胜的概率是,则乙不输的概率是_【答案】乙不输表示打平或获胜,故其概率为P.11盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个若从中随机取出2个球,则所取出的2个球颜色不同的概率为_【答案】设3个红色球为A1,A2,A3,2个黄色球为B1,B2,从5个球中,随机取出2个球的事件有:A1A2,A1A3,A1B1,A1B2,A2A3,A2B1,A2B2,A3B1,A3B2,B1B2,共10种其中2个球的颜色不同的有A1B1,A1B2,A2B1,A2B2,A3B1,A3B2共6种,所以所求概率为.12先后抛掷两枚均匀的正方体骰子
12、(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为x,y,则log2xy1的概率为_【答案】易知试验样本点的总数为36,由log2xy1,得2xy,其中x,y1,2,3,4,5,6,所以或或共3个样本点,所以P.三、解答题13某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别是0.3,0.2,0.1,0.4.求:(1)他乘火车或飞机去的概率;(2)他不乘轮船去的概率【答案】解析:设A“乘火车去开会”,B“乘轮船去开会”,C“乘汽车去开会”,D“乘飞机去开会”,它们彼此互斥(1)P(AD)P(A)P(D)0.30.40.7.(2)P()1P(B)10.20.8.14
13、一盒中装有各色球12个,其中5个红球、4个黑球、2个白球、1个绿球从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出的1球是红球或黑球或白球的概率【答案】法一:(1)从12个球中任取1球得红球有5种取法,得黑球有4种取法,得红球或黑球共有549种不同取法,任取1球有12种取法任取1球得红球或黑球的概率为P1.(2)从12个球中任取1球得红球有5种取法,得黑球有4种取法,得白球有2种取法,从而得红球或黑球或白球的概率为.法二:(利用互斥事件求概率)记事件A1任取1球为红球,A2任取1球为黑球,A3任取1球为白球,A4任取1球为绿球,则P(A1),P(A2),P(A3),P(A4)
14、.根据题意知,事件A1,A2,A3,A4彼此互斥,由互斥事件概率公式,得(1)取出1球为红球或黑球的概率为P(A1A2)P(A1)P(A2).(2)取出1球为红球或黑球或白球的概率为P(A1A2A3)P(A1)P(A2)P(A3).15一个袋中装有四个形状、大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求nm2的概率【答案】(1)从袋中随机取两个球,其一切可能的结果组成的样本点有:1和2,1和3,1和4,2和3,2和4,3和4,共6
15、个从袋中取出的两个球的编号之和不大于4的事件有:1和2,1和3,共2个,因此所求事件的概率为P.(2)先从袋中随机取一个球,记下编号为m,放回后,再从袋中随机取一个球,记下编号为n,试验的样本空间 (1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个样本点又满足条件nm2的样本点有:(1,3),(1,4),(2,4),共3个所以,满足条件nm2的事件的概率为P1,故满足条件nm2的事件的概率为1P11.B组 能力提升一、选择题1袋中有大小相同的黄、
16、红、白球各一个,每次任取一个,有放回地取3次,则是下列哪个事件的概率()A颜色全同B颜色不全同C颜色全不同D无红球【答案】B试验的样本空间黄黄黄,红红红,白白白,红黄黄,黄红黄,黄黄红,白黄黄,黄白黄,黄黄白,黄红红,红黄红,红红黄,白红红,红白红,红红白,黄白白,白黄白,白白黄,红白白,白红白,白白红,黄红白,黄白红,红黄白,红白黄,白红黄,白黄红,包含27个样本点,事件“颜色全相同”包含3个样本点,则其概率为1,所以是事件“颜色不全同”的概率2(多选题)张明与李华两人做游戏,则下列游戏规则中公平的是()A抛掷一枚质地均匀的骰子,向上的点数为奇数则张明获胜,向上的点数为偶数则李华获胜B同时抛
17、掷两枚质地均匀的硬币,恰有一枚正面向上则张明获胜,两枚都正面向上则李华获胜C从一副不含大小王的扑克牌中抽一张,扑克牌是红色的则张明获胜,扑克牌是黑色的则李华获胜D张明、李华两人各写一个数字6或8,两人写的数字相同则张明获胜,否则李华获胜【答案】ACD选项A中,向上的点数为奇数与向上的点数为偶数的概率相等,A符合题意;选项B中,张明获胜的概率是,而李华获胜的概率是,故游戏规则不公平,B不符合题意;选项C中,扑克牌是红色与扑克牌是黑色的概率相等,C符合题意;选项D中,两人写的数字相同与两人写的数字不同的概率相等,D符合题意二、填空题3已知a0,1,2,b1,1,3,5,则函数f(x)ax22bx在
18、区间(1,)上为增函数的概率为_【答案】a0,1,2,b1,1,3,5,基本事件总数n3412.用(a,b)表示a,b的取值若函数f(x)ax22bx在区间(1,)上为增函数,则当a0时,f(x)2bx,符合条件的只有(0,1),即a0,b1;当a0时,需满足1,符合条件的有(1,1),(1,1),(2,1),(2,1),共4种函数f(x)ax22bx在区间(1,)上为增函数的概率P.三、解答题4甲、乙两人参加普法知识竞赛,共有5个不同的题目其中,选择题3个,判断题2个,甲、乙两人各抽一题(1)甲、乙两人中有一个抽到选择题,另一个抽到判断题的概率是多少?(2)甲、乙两人中至少有一人抽到选择题的
19、概率是多少?【答案】把3个选择题记为x1,x2,x3,2个判断题记为p1,p2.总的事件数为20.“甲抽到选择题,乙抽到判断题”的情况有:(x1,p1),(x1,p2),(x2,p1),(x2,p2),(x3,p1),(x3,p2),共6种;“甲抽到判断题,乙抽到选择题”的情况有:(p1,x1),(p1,x2),(p1,x3),(p2,x1),(p2,x2),(p2,x3),共6种;“甲、乙都抽到选择题”的情况有:(x1,x2),(x1,x3),(x2,x1),(x2,x3),(x3,x1),(x3,x2),共6种;“甲、乙都抽到判断题”的情况有:(p1,p2),(p2,p1),共2种(1)“
20、甲抽到选择题,乙抽到判断题”的概率为,“甲抽到判断题,乙抽到选择题”的概率为,故“甲、乙两人中有一个抽到选择题,另一个抽到判断题”的概率为.(2)“甲、乙两人都抽到判断题”的概率为,故“甲、乙两人至少有一人抽到选择题”的概率为1.52019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记
21、为A,B,C,D,E,F.享受情况如表,其中“”表示享受,“”表示不享受现从这6人中随机抽取2人接受采访员工项目ABCDEF子女教育继续教育大病医疗 住房贷款利息 住房租金 赡养老人 试用所给字母列举出所有可能的抽取结果;设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率【答案】(1)由已知得老、中、青员工人数之比为6910,由于采用分层抽样从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人(2)从已知的6人中随机抽取2人,试验空间(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个样本点由表格知,事件M (A,B),(A,D),(A,E),(A,F),(B,D),(B,E),(B,F),(C,E),(C,F),(D,F),(E,F),共11个样本点,所以,事件M发生的概率P(M).