20春八数下(北师大版)6.4 多边形的内角和与外角和 导学案.doc

上传人(卖家):田田田 文档编号:326804 上传时间:2020-03-03 格式:DOC 页数:3 大小:1.01MB
下载 相关 举报
20春八数下(北师大版)6.4 多边形的内角和与外角和 导学案.doc_第1页
第1页 / 共3页
20春八数下(北师大版)6.4 多边形的内角和与外角和 导学案.doc_第2页
第2页 / 共3页
20春八数下(北师大版)6.4 多边形的内角和与外角和 导学案.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、优秀领先 飞翔梦想 成人成才 6.4 多边形的内角和与外角和【学习目标】1、掌握多边形内角和定理,进一步了解转化的数学思想。2、经历探索多边形的内角和公式的过程;会应用公式解决问题。【学习方法】自主探究与小组合作交流相结合【学习重难点】重点:多边形内角和定理 难点:多边形内角和定理的应用【学习过程】模块一 预习反馈一、学习准备:1、三角形的三个内角的和等于_2、的多边形叫正多边形。3、多边形与三角形的关系四边形可以被从同一顶点出发的对角线分成_个三角形五边形可以被从同一顶点出发的对角线分成_个三角形六边形可以被从同一顶点出发的对角线分成_个三角形.n边形可以被从同一顶点出发的对角线分成_个三角

2、形补充:n边形(n3)从一个顶点出发可以引_条对角线.4、多边形内角和定理:n边形的内角和等于_. 正n边形的一个内角为 。二、教材精读:5、例1 多边形内角和定理有两种典型运用:已知边数求内角和。如:八边形内角和为 已知内角和求边数。如:多边形内角和为10800,则它是 。6、正六边形的一个内角等于 _度模块二 合作探究7、例2 过某个多边形一个顶点的所有对角线,将这个多边形分成5个三角形. 这个多边形是几边形?它的内角和是多少?8、剪掉一张长方形的一个角后,纸片还剩几个角?这个多边形的内角和是多少度?与同伴交流.模块三 形成提升1、正七边形的内角和为_.2、已知多边形的内角和为900,则这

3、个多边形的边数为_.3、一个多边形每个内角的度数是150,则这个多边形的边数是_.4、如果一个多边形的边数增加1,那么这个多边形的内角和增加_度.5.下列角中能成为一个多边形的内角和的是( )A.270 B.560 C.1800 D.19006、一个多边形共有27条对角线,则这个多边形的边数为A.8 B.10 C.9 D.117、一个多边形的各边都相等,周长是60,且它的内角和为900,则它的边长是_.8、如图所示的模板,按规定,AB,CD的延长线相交成80的角,因交点不在板上,不便测量,质检员测得BAE=122,DCF=155如果你是质检员,如何知道模板是否合格?为什么? 9、晓彬求出一个正多边形的一个内角为145.他的计算正确吗?如果正确,他求的是正几边形的内角?如果不正确,请说明理由.模块四 小结评价一、本课知识点:1、n边形可以被从同一顶点出发的对角线分成_个三角形2、多边形内角和定理:n边形的内角和等于_. 正n边形的一个内角为 。二、本课典型例题:三、我的困惑: 第 3 页 共 3 页

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中 > 数学 > 北师大版(2024) > 八年级下册
版权提示 | 免责声明

1,本文(20春八数下(北师大版)6.4 多边形的内角和与外角和 导学案.doc)为本站会员(田田田)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|