1、02填空题知识点分类-江苏省扬州市五年(2018-2022)中考数学真题分类汇编一有理数的减法(共1小题)1(2022扬州)扬州某日的最高气温为6,最低气温为2,则该日的日温差是 二科学记数法表示较大的数(共4小题)2(2022扬州)掌握地震知识,提升防震意识根据里氏震级的定义,地震所释放出的能量E与震级n的关系为Ek101.5n(其中k为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的 倍3(2021扬州)2021年扬州世界园艺博览会以“绿色城市,健康生活”为主题,在某搜索引擎中输入“扬州世界园艺博览会”约有3020000个相关结果,数据3020000用科学记数
2、法表示为 4(2020扬州)2020年6月23日,中国自主研发的北斗三号最后一颗卫星成功发射据统计,国内已有超过6500000辆营运车辆导航设施应用北斗系统,数据6500000用科学记数法表示为 5(2019扬州)2019年5月首届大运河文化旅游博览会在扬州成功举办,京杭大运河全长约1790000米,数据1790000米用科学记数法表示为 三科学记数法表示较小的数(共1小题)6(2018扬州)在人体血液中,红细胞直径约为0.00077cm,数据0.00077用科学记数法表示为 四规律型:图形的变化类(共1小题)7(2021扬州)将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,
3、3,6,10,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为 五平方差公式(共1小题)8(2021扬州)计算:2021220202 六提公因式法与公式法的综合运用(共4小题)9(2022扬州)分解因式:3m23 10(2021宜宾)分解因式:a32a2+a 11(2019扬州)分解因式:a3b9ab 12(2018扬州)因式分解:182x2 七二次根式有意义的条件(共2小题)13(2022扬州)若在实数范围内有意义,则x的取值范围是 14(2020扬州)代数式在实数范围内有意义,则实数x的取值范围是 八二次根式的混合运算(共1小题)15(2019扬州)计
4、算:(2)2018(+2)2019的结果是 九一元一次方程的应用(共1小题)16(2021扬州)扬州雕版印刷技艺历史悠久,元代数学家朱世杰的算学启蒙一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马 天追上慢马一十一元二次方程的解(共1小题)17(2018扬州)若m是方程2x23x10的一个根,则6m29m+2015的值为 一十一解一元二次方程-直接开平方法(共1小题)18(2020扬州)方程(x+1)
5、29的根是 一十二解一元二次方程-因式分解法(共1小题)19(2019扬州)一元二次方程x(x2)x2的根是 一十三根的判别式(共2小题)20(2022扬州)请填写一个常数,使得关于x的方程x22x+ 0有两个不相等的实数根21(2018扬州)关于x的方程mx22x+30有两个不相等的实数根,那么m的取值范围是 一十四解一元一次不等式组(共1小题)22(2018扬州)不等式组的解集为 一十五点的坐标(共1小题)23(2021扬州)在平面直角坐标系中,若点P(1m,52m)在第二象限,则整数m的值为 一十六一次函数图象上点的坐标特征(共1小题)24(2018扬州)如图,在等腰RtABO,A90,
6、点B的坐标为(0,2),若直线l:ymx+m(m0)把ABO分成面积相等的两部分,则m的值为 一十七一次函数与一元一次不等式(共1小题)25(2022扬州)如图,函数ykx+b(k0)的图象经过点P,则关于x的不等式kx+b3的解集为 一十八平行线的性质(共3小题)26(2022扬州)将一副直角三角板如图放置,已知E60,C45,EFBC,则BND 27(2019扬州)将一个矩形纸片折叠成如图所示的图形,若ABC26,则ACD 28(2019扬州)如图,在ABC中,AB5,AC4,若进行以下操作,在边BC上从左到右依次取点D1、D2、D3、D4、;过点D1作AB、AC的平行线分别交AC、AB于
7、点E1、F1;过点D2作AB、AC的平行线分别交AC、AB于点E2、F2;过点D3作AB、AC的平行线分别交AC、AB于点E3、F3,则4(D1E1+D2E2+D2019E2019)+5(D1F1+D2F2+D2019F2019) 一十九勾股定理的应用(共1小题)29(2020扬州)九章算术是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?答:折断处离地面 尺高二十三角形中位线定理(共1小题)30
8、(2021扬州)如图,在RtABC中,ACB90,点D是AB的中点,过点D作DEBC,垂足为点E,连接CD,若CD5,BC8,则DE 二十一平行四边形的性质(共2小题)31(2021扬州)如图,在ABCD中,点E在AD上,且EC平分BED,若EBC30,BE10,则ABCD的面积为 32(2020扬州)如图,在ABCD中,B60,AB10,BC8,点E为边AB上的一个动点,连接ED并延长至点F,使得DFDE,以EC、EF为邻边构造EFGC,连接EG,则EG的最小值为 二十二矩形的性质(共1小题)33(2021扬州)如图,在ABC中,ACBC,矩形DEFG的顶点D、E在AB上,点F、G分别在BC
9、、AC上,若CF4,BF3,且DE2EF,则EF的长为 二十三正方形的性质(共1小题)34(2019扬州)如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN若AB7,BE5,则MN 二十四三角形的外接圆与外心(共1小题)35(2018扬州)如图,已知O的半径为2,ABC内接于O,ACB135,则AB 二十五正多边形和圆(共2小题)36(2020扬州)如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b3cm,则螺帽边长a cm37(2019扬州)如图,AC是O的内接正六边形的一边,点B在上,且
10、BC是O的内接正十边形的一边,若AB是O的内接正n边形的一边,则n 二十六圆锥的计算(共2小题)38(2020扬州)圆锥的底面半径为3,侧面积为12,则这个圆锥的母线长为 39(2018扬州)用半径为10cm,圆心角为120的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为 cm二十七作图基本作图(共1小题)40(2020扬州)如图,在ABC中,按以下步骤作图:以点B为圆心,任意长为半径作弧,分别交AB、BC于点D、E分别以点D、E为圆心,大于DE的同样长为半径作弧,两弧交于点F作射线BF交AC于点G如果AB8,BC12,ABG的面积为18,则CBG的面积为 二十八翻折变换(折叠问题)(共
11、2小题)41(2022扬州)“做数学”可以帮助我们积累数学活动经验如图,已知三角形纸片ABC,第1次折叠使点B落在BC边上的点B处,折痕AD交BC于点D;第2次折叠使点A落在点D处,折痕MN交AB于点P若BC12,则MP+MN 42(2018扬州)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为 二十九旋转的性质(共1小题)43(2019扬州)如图,将四边形ABCD绕顶点A顺时针旋转45至四边形ABCD的位置,若AB16cm,则图中阴影部分的面积为 cm2三十锐角三角函数的定义(共1小题)44(2022扬州)在
12、ABC中,C90,a、b、c分别为A、B、C的对边,若b2ac,则sinA的值为 三十一由三视图判断几何体(共1小题)45(2021扬州)如图是某圆柱体果罐,它的主视图是边长为10cm的正方形,该果罐侧面积为 cm2三十二中位数(共1小题)46(2021扬州)已知一组数据:a、4、5、6、7的平均数为5,则这组数据的中位数是 三十三方差(共1小题)47(2022扬州)某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如图所示,甲、乙两选手成绩的方差分别记为S甲2、S乙2,则S甲2 S乙2(填“”“”或“”)三十四列表法与树状图法(共1小题)48(2018扬州)有4根细木棒,长度分别为2c
13、m,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是 三十五利用频率估计概率(共2小题)49(2020扬州)大数据分析技术为打赢疫情防控阻击战发挥了重要作用如图是小明同学的健康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为 cm250(2019扬州)扬州某毛绒玩具厂对一批毛绒玩具进行质量抽检的结果如下:抽取的毛绒玩具数n2050100200500100015002000优等品的频数m1947911844629211
14、3791846优等品的频率0.9500.9400.9100.9200.9240.9210.9190.923从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是 (精确到0.01)02填空题知识点分类-江苏省扬州市五年(2018-2022)中考数学真题分类汇编参考答案与试题解析一有理数的减法(共1小题)1(2022扬州)扬州某日的最高气温为6,最低气温为2,则该日的日温差是 8【解答】解:根据题意得:6(2)6+28(),则该日的日温差是8故答案为:8二科学记数法表示较大的数(共4小题)2(2022扬州)掌握地震知识,提升防震意识根据里氏震级的定义,地震所释放出的能量E与震级n的关系为E
15、k101.5n(其中k为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的 1000倍【解答】解:由题意得:1000,故答案为:10003(2021扬州)2021年扬州世界园艺博览会以“绿色城市,健康生活”为主题,在某搜索引擎中输入“扬州世界园艺博览会”约有3020000个相关结果,数据3020000用科学记数法表示为 3.02106【解答】解:将3020000用科学记数法表示为3.02106故答案为:3.021064(2020扬州)2020年6月23日,中国自主研发的北斗三号最后一颗卫星成功发射据统计,国内已有超过6500000辆营运车辆导航设施应用北斗系统,数据
16、6500000用科学记数法表示为6.5106【解答】解:6500000用科学记数法表示应为:6.5106,故答案为:6.51065(2019扬州)2019年5月首届大运河文化旅游博览会在扬州成功举办,京杭大运河全长约1790000米,数据1790000米用科学记数法表示为1.79106【解答】解:数据1790000米用科学记数法表示为1.79106,故答案为:1.79106三科学记数法表示较小的数(共1小题)6(2018扬州)在人体血液中,红细胞直径约为0.00077cm,数据0.00077用科学记数法表示为7.7104【解答】解:0.000777.7104,故答案为:7.7104四规律型:图
17、形的变化类(共1小题)7(2021扬州)将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为 1275【解答】解:第个图形中的黑色圆点的个数为:1,第个图形中的黑色圆点的个数为:3,第个图形中的黑色圆点的个数为:6,第个图形中的黑色圆点的个数为:10,第n个图形中的黑色圆点的个数为,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,其中每3个数中,都有2个能被3整除,332161,163+250,则第33个被3整除的数为原数列中第50个数,即1275
18、,故答案为:1275五平方差公式(共1小题)8(2021扬州)计算:20212202024041【解答】解:2021220202(2021+2020)(20212020)404114041故答案为:4041六提公因式法与公式法的综合运用(共4小题)9(2022扬州)分解因式:3m233(m+1)(m1)【解答】解:原式3(m21)3(m+1)(m1)故答案为:3(m+1)(m1)10(2021宜宾)分解因式:a32a2+aa(a1)2【解答】解:a32a2+aa(a22a+1)a(a1)2故答案为:a(a1)211(2019扬州)分解因式:a3b9abab(a+3)(a3)【解答】解:a3b9
19、aba(a29)ab(a+3)(a3)故答案为:ab(a+3)(a3)12(2018扬州)因式分解:182x22(x+3)(3x)【解答】解:原式2(9x2)2(x+3)(3x),故答案为:2(x+3)(3x)七二次根式有意义的条件(共2小题)13(2022扬州)若在实数范围内有意义,则x的取值范围是x1【解答】解:若在实数范围内有意义,则x10,解得:x1故答案为:x114(2020扬州)代数式在实数范围内有意义,则实数x的取值范围是x2【解答】解:代数式在实数范围内有意义,则x+20,解得:x2故答案为:x2八二次根式的混合运算(共1小题)15(2019扬州)计算:(2)2018(+2)2
20、019的结果是+2【解答】解:原式(2)(+2)2018(+2)(54)2018(+2)+2,故答案为+2九一元一次方程的应用(共1小题)16(2021扬州)扬州雕版印刷技艺历史悠久,元代数学家朱世杰的算学启蒙一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马 20天追上慢马【解答】解:设快马行x天追上慢马,则此时慢马行了(x+12)日,依题意,得:240x150(x+12),解得:x20,快马20天追
21、上慢马,故答案为:20一十一元二次方程的解(共1小题)17(2018扬州)若m是方程2x23x10的一个根,则6m29m+2015的值为2018【解答】解:由题意可知:2m23m10,2m23m1原式3(2m23m)+20152018故答案为:2018一十一解一元二次方程-直接开平方法(共1小题)18(2020扬州)方程(x+1)29的根是x12,x24【解答】解:(x+1)29,x+13,x12,x24故答案为:x12,x24一十二解一元二次方程-因式分解法(共1小题)19(2019扬州)一元二次方程x(x2)x2的根是x12,x21【解答】解:x(x2)x2,x(x2)(x2)0,(x2)
22、(x1)0,x20,x10,x12,x21,故答案为:x12,x21一十三根的判别式(共2小题)20(2022扬州)请填写一个常数,使得关于x的方程x22x+0(答案不唯一)0有两个不相等的实数根【解答】解:a1,b2b24ac(2)241c0,c1故答案为:0(答案不唯一)21(2018扬州)关于x的方程mx22x+30有两个不相等的实数根,那么m的取值范围是 m且m0【解答】解:一元二次方程mx22x+30有两个不相等的实数根,0且m0,412m0且m0,m且m0,故答案为:m且m0一十四解一元一次不等式组(共1小题)22(2018扬州)不等式组的解集为3x【解答】解:解不等式3x+15x
23、,得:x,解不等式2,得:x3,则不等式组的解集为3x,故答案为:3x一十五点的坐标(共1小题)23(2021扬州)在平面直角坐标系中,若点P(1m,52m)在第二象限,则整数m的值为 2【解答】解:由题意得:,解得:,整数m的值为2,故答案为:2一十六一次函数图象上点的坐标特征(共1小题)24(2018扬州)如图,在等腰RtABO,A90,点B的坐标为(0,2),若直线l:ymx+m(m0)把ABO分成面积相等的两部分,则m的值为【解答】解:ymx+mm(x+1),函数ymx+m一定过点(1,0),当x0时,ym,点C的坐标为(0,m),由题意可得,直线AB的解析式为yx+2,得,直线l:y
24、mx+m(m0)把ABO分成面积相等的两部分,解得,m1,m2(舍去),故答案为:一十七一次函数与一元一次不等式(共1小题)25(2022扬州)如图,函数ykx+b(k0)的图象经过点P,则关于x的不等式kx+b3的解集为 x1【解答】解:由图象可得,当x1时,y3,该函数y随x的增大而减小,不等式kx+b3的解集为x1,故答案为:x1一十八平行线的性质(共3小题)26(2022扬州)将一副直角三角板如图放置,已知E60,C45,EFBC,则BND105【解答】解:E60,C45,F30,B45,EFBC,NDBF30,BND180BNDB1804530105,故答案为:10527(2019扬
25、州)将一个矩形纸片折叠成如图所示的图形,若ABC26,则ACD128【解答】解:延长DC,由题意可得:ABCBCEBCA26,则ACD1802626128故答案为:12828(2019扬州)如图,在ABC中,AB5,AC4,若进行以下操作,在边BC上从左到右依次取点D1、D2、D3、D4、;过点D1作AB、AC的平行线分别交AC、AB于点E1、F1;过点D2作AB、AC的平行线分别交AC、AB于点E2、F2;过点D3作AB、AC的平行线分别交AC、AB于点E3、F3,则4(D1E1+D2E2+D2019E2019)+5(D1F1+D2F2+D2019F2019)40380【解答】解:D1F1A
26、C,D1E1AB,即,AB5,BC4,4D1E1+5D1F120,同理4D2E2+5D2F220,4D2019E2019+5D2019F201920,4(D1E1+D2E2+D2019E2019)+5(D1F1+D2F2+D2019F2019)20201940380故答案为:40380一十九勾股定理的应用(共1小题)29(2020扬州)九章算术是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?答:
27、折断处离地面4.55尺高【解答】解:设折断处离地面x尺,根据题意可得:x2+32(10x)2,解得:x4.55答:折断处离地面4.55尺故答案为:4.55二十三角形中位线定理(共1小题)30(2021扬州)如图,在RtABC中,ACB90,点D是AB的中点,过点D作DEBC,垂足为点E,连接CD,若CD5,BC8,则DE3【解答】解:ACB90,DEBC,DEAC,点D是AB的中点,E是BC的中点,AB2CD10,AC2DE,BC8,AC6,DE3故答案为3二十一平行四边形的性质(共2小题)31(2021扬州)如图,在ABCD中,点E在AD上,且EC平分BED,若EBC30,BE10,则ABC
28、D的面积为 50【解答】解:过点E作EFBC,垂足为F,EBC30,BE10,EFBE5,四边形ABCD是平行四边形,ADBC,DECBCE,又EC平分BED,即BECDEC,BCEBEC,BEBC10,平行四边形ABCD的面积BCEF10550,故答案为:5032(2020扬州)如图,在ABCD中,B60,AB10,BC8,点E为边AB上的一个动点,连接ED并延长至点F,使得DFDE,以EC、EF为邻边构造EFGC,连接EG,则EG的最小值为9【解答】解:作CHAB于点H,在ABCD中,B60,BC8,CH4,四边形ECGF是平行四边形,EFCG,EODGOC,DFDE,当EO取得最小值时,
29、EG即可取得最小值,当EOCD时,EO取得最小值,CHEO,EO4,GO5,EG的最小值是,故答案为:9二十二矩形的性质(共1小题)33(2021扬州)如图,在ABC中,ACBC,矩形DEFG的顶点D、E在AB上,点F、G分别在BC、AC上,若CF4,BF3,且DE2EF,则EF的长为 【解答】解:DE2EF,设EFx,则DE2x,四边形DEFG是矩形,GFAB,CGFCAB,即,AB,AD+BEABDE,ACBC,AB,在ADG和BEF中,ADGBEF(AAS),ADBE,在RtBEF中,BE2+EF2BF2,即,解得:x或(舍),EF,故答案为:二十三正方形的性质(共1小题)34(2019
30、扬州)如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN若AB7,BE5,则MN【解答】解:连接CF,正方形ABCD和正方形BEFG中,AB7,BE5,GFGB5,BC7,GCGB+BC5+712,13M、N分别是DC、DF的中点,MN故答案为:二十四三角形的外接圆与外心(共1小题)35(2018扬州)如图,已知O的半径为2,ABC内接于O,ACB135,则AB2【解答】解:设点D为优弧AB上一点,连接AD、BD、OA、OB,如右图所示,O的半径为2,ABC内接于O,ACB135,ADB45,AOB90,O
31、AOB2,AB2,故答案为:2二十五正多边形和圆(共2小题)36(2020扬州)如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b3cm,则螺帽边长acm【解答】解:如图,连接AC,过点B作BDAC于D,由正六边形,得ABC120,ABBCa,BCDBAC30由AC3,得CD1.5cosBCD,即,解得a,故答案为:37(2019扬州)如图,AC是O的内接正六边形的一边,点B在上,且BC是O的内接正十边形的一边,若AB是O的内接正n边形的一边,则n15【解答】解:连接BO,AC是O内接正六边形的一边,AOC360660,BC是O内接正十边形的一边,BOC3601036,AOBA
32、OCBOC603624,n3602415;故答案为:15二十六圆锥的计算(共2小题)38(2020扬州)圆锥的底面半径为3,侧面积为12,则这个圆锥的母线长为4【解答】解:S侧rl,3l12,l4答:这个圆锥的母线长为4故答案为:439(2018扬州)用半径为10cm,圆心角为120的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm【解答】解:设圆锥的底面圆半径为rcm,依题意,得2r,解得rcm故选:二十七作图基本作图(共1小题)40(2020扬州)如图,在ABC中,按以下步骤作图:以点B为圆心,任意长为半径作弧,分别交AB、BC于点D、E分别以点D、E为圆心,大于DE的同样长为半径
33、作弧,两弧交于点F作射线BF交AC于点G如果AB8,BC12,ABG的面积为18,则CBG的面积为 27【解答】解:如图,过点G作GMAB于点M,GNBC于点N,根据作图过程可知:BG是ABC的平分线,GMGN,ABG的面积为18,ABGM18,4GM18,GM,CBG的面积为:BCGN1227故答案为:27二十八翻折变换(折叠问题)(共2小题)41(2022扬州)“做数学”可以帮助我们积累数学活动经验如图,已知三角形纸片ABC,第1次折叠使点B落在BC边上的点B处,折痕AD交BC于点D;第2次折叠使点A落在点D处,折痕MN交AB于点P若BC12,则MP+MN6【解答】解:如图2,由折叠得:A
34、MMD,MNAD,ADBC,GNBC,AGBG,GN是ABC的中位线,GNBC126,PMGM,MP+MNGM+MNGN6故答案为:642(2018扬州)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为(,)【解答】解:由折叠得:CBODBO,矩形ABCO,BCOA,CBOBOA,DBOBOA,BEOE,在ODE和BAE中,ODEBAE(AAS),AEDE,设DEAEx,则有OEBE8x,在RtODE中,根据勾股定理得:42+x2(8x)2,解得:x3,即OE5,DE3,过D作DFOA,SOEDODDEOEDF
35、,DF,OF,则D(,)故答案为:(,)二十九旋转的性质(共1小题)43(2019扬州)如图,将四边形ABCD绕顶点A顺时针旋转45至四边形ABCD的位置,若AB16cm,则图中阴影部分的面积为32cm2【解答】解:由旋转的性质得:BAB45,四边形ABCD四边形ABCD,则图中阴影部分的面积四边形ABCD的面积+扇形ABB的面积四边形ABCD的面积扇形ABB的面积32;故答案为:32三十锐角三角函数的定义(共1小题)44(2022扬州)在ABC中,C90,a、b、c分别为A、B、C的对边,若b2ac,则sinA的值为 【解答】解:在ABC中,C90,c2a2+b2,b2ac,c2a2+ac,
36、等式两边同时除以ac得:+1,令x,则有x+1,x2+x10,解得:x1,x2(舍去),sinA故答案为:三十一由三视图判断几何体(共1小题)45(2021扬州)如图是某圆柱体果罐,它的主视图是边长为10cm的正方形,该果罐侧面积为 100cm2【解答】解:由题意得圆柱的底面直径为10cm,高为10cm,侧面积1010100(cm2)故答案为:100三十二中位数(共1小题)46(2021扬州)已知一组数据:a、4、5、6、7的平均数为5,则这组数据的中位数是 5【解答】解:这组数据的平均数为5,则,解得:a3,将这组数据从小到大重新排列为:3,4,5,6,7,观察数据可知最中间的数是5,则中位
37、数是5故答案为:5三十三方差(共1小题)47(2022扬州)某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如图所示,甲、乙两选手成绩的方差分别记为S甲2、S乙2,则S甲2S乙2(填“”“”或“”)【解答】解:图表数据可知,甲数据偏离平均数数据较大,乙数据偏离平均数数据较小,即甲的波动性较大,即方差大,故答案为:三十四列表法与树状图法(共1小题)48(2018扬州)有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是【解答】解:根据题意,从4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形
38、的有2、3、4;3、4、5;2,4,5,3种;故其概率为:三十五利用频率估计概率(共2小题)49(2020扬州)大数据分析技术为打赢疫情防控阻击战发挥了重要作用如图是小明同学的健康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为 2.4cm2【解答】解:经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,点落入黑色部分的概率为0.6,边长为2cm的正方形的面积为4cm2,设黑色部分的面积为S,则0.6,解得S2.4(cm2)估计黑色部分的总面积约为2.4cm2故答案为:2.450(2019扬州)扬州某毛绒玩具厂对一批毛绒玩具进行质量抽检的结果如下:抽取的毛绒玩具数n2050100200500100015002000优等品的频数m19479118446292113791846优等品的频率0.9500.9400.9100.9200.9240.9210.9190.923从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是 0.92(精确到0.01)【解答】解:从这批毛绒玩具中,任意抽取一个毛绒玩具是优等品的概率的估计值是0.92,故答案为0.92