1、信号与系统信号与系统一指数类信号所谓指数类信号是指可以通过复指数函数表示的信号,这所谓指数类信号是指可以通过复指数函数表示的信号,这类信号的基本特点是连续函数。类信号的基本特点是连续函数。0cos()ftAt1 1指数信号指数信号其中其中K为指数信号在为指数信号在t=0时的取值,时的取值,通常被称为衰减系数通常被称为衰减系数。一指数类信号 0cos()ftAt当当为大于为大于0的实数,得到单边负指数信号的实数,得到单边负指数信号实指数信号一个重要特点就是其时间微分或者积分依然实指数信号一个重要特点就是其时间微分或者积分依然是指数函数。是指数函数。一指数类信号 0cos()ftAt其中其中,为实
2、数。得到为实数。得到所以所以,实数指数信号可以看作虚部为,实数指数信号可以看作虚部为0的复指数信号。的复指数信号。一指数类信号 0cos()ftAt2 2正弦、余弦信号正弦、余弦信号其中其中K为常数。两者的关系为为常数。两者的关系为正弦信号和余弦信号包含幅度,频率和相位三个量。正弦正弦信号和余弦信号包含幅度,频率和相位三个量。正弦信号和余弦信号两者仅在相位上相差信号和余弦信号两者仅在相位上相差 ,所以两者可以统,所以两者可以统称为正弦或余弦信号。称为正弦或余弦信号。一指数类信号 0cos()ftAt 正弦、余弦正弦、余弦函数与指数函数的关系函数与指数函数的关系或者或者欧拉公式欧拉公式一指数类信
3、号 0cos()ftAt 正弦、余弦信号正弦、余弦信号微分关系微分关系二奇异信号 0cos()ftAt自身或者其微分或积分不连续的信号称为自身或者其微分或积分不连续的信号称为奇异信号奇异信号。1.1.单位斜变信号单位斜变信号从从0开始斜率为开始斜率为1的直线所表示的信号。的直线所表示的信号。二奇异信号 0cos()ftAt2.2.单位阶跃信号单位阶跃信号在在t0时取值为时取值为1的信号。的信号。当当t=0时,时,u t的取值是无定义的。的取值是无定义的。R t u t与单位阶跃信号与单位阶跃信号 R(t)u(t)互为积分、微分关系互为积分、微分关系二奇异信号 0cos()ftAt3.3.单位冲
4、激信号单位冲激信号当当t=0时,时,u t的取值是无定义的。的取值是无定义的。R t u t与单位阶跃信号与单位阶跃信号 1)狄拉克狄拉克(Dirac)函数函数这不是定义,而是性质!这不是定义,而是性质!二奇异信号 0cos()ftAt当当t=0时,时,u t的取值是无定义的。的取值是无定义的。R t u t与单位阶跃信号与单位阶跃信号 2)过零点函数求极限过零点函数求极限二奇异信号 0cos()ftAt当当t=0时,时,u t的取值是无定义的。的取值是无定义的。R t u t与单位阶跃信号与单位阶跃信号 2)过零点函数求极限过零点函数求极限这种方式这种方式缺乏缺乏唯一性!唯一性!00()li
5、m()1 lim22tG tu tu t二奇异信号 0cos()ftAt当当t=0时,时,u t的取值是无定义的。的取值是无定义的。R t u t与单位阶跃信号与单位阶跃信号 3)广义函数定义广义函数定义从一般意义上来说,函数建立自变量域中的元素与值从一般意义上来说,函数建立自变量域中的元素与值域中元素的对应关系,也就是说人们常说的映射。域中元素的对应关系,也就是说人们常说的映射。=二奇异信号 0cos()ftAt当当t=0时,时,u t的取值是无定义的。的取值是无定义的。R t u t与单位阶跃信号与单位阶跃信号 3)(t)的运算的运算二奇异信号 0cos()ftAt当当t=0时,时,u t的取值是无定义的。的取值是无定义的。R t u t与单位阶跃信号与单位阶跃信号 3)(t)的运算的运算二奇异信号 0cos()ftAt当当t=0时,时,u t的取值是无定义的。的取值是无定义的。R t u t与单位阶跃信号与单位阶跃信号 对于广义函数对于广义函数(t)而言,而言,其广义导数其广义导数4.4.冲激偶冲激偶的定义为的定义为其中其中f(t)存在于某个固定区间,可以微分任意多次。存在于某个固定区间,可以微分任意多次。二奇异信号 0cos()ftAt当当t=0时,时,u t的取值是无定义的。的取值是无定义的。R t u t与单位阶跃信号与单位阶跃信号 冲激偶的性质冲激偶的性质