1、4.3 相似多边形,回顾交流,情境引入,画板演示,A,B,C,D,E,F,A,B,C,D,E,F,A= B= C= D= E= F=, , ,AB= BC= CD= DE= EF= FG=,AB= BC= CD= DE= EF= FA=, , ,mm mm mm mm mm mm,mm mm mm mm mm mm,6.5,5.5,6,5,7.5,4.5,13,11,12,10,15,9,A= B= C= D= E= F=,A= B= C= D= E= F=,A= B= C= D= E= F=, , ,AB= BC= CD= DE= EF= FG=,AB= BC= CD= DE= EF= FA
2、=, , ,mm mm mm mm mm mm,mm mm mm mm mm mm,6.5,5.5,6,5,7.5,4.5,13,11,12,10,15,9,从以上数据你能得到什么结论?,A= A B= B C= C D= D E= E F= F,对应角,对应边,结论: 六边形ABCDEF与六边形A1B1C1D1E1F1是形状相同的图形; 它们的六个角都分别相等,称为对应角;六条边的比都相等,称为对应边.,例 下列每组图形形状相同,它们的对应角有怎样的关系?对应边呢?,(1)正三角形ABC与正三角形DEF;,解:(1)由于正三角形每个角都等于600,所以A=D= 600,B=E= 600, C
3、=F= 600;,由于正三角形三边都相等,所以,(2)正方形ABCD与正方形EFGH.,解:(2)由于正方形每个角都是直角,所以A=E= 900, B=F= 900, C=G= 900, D=H= 900;,由于正方形四边相等,所以,形状相同的图形,它们的对应角有怎样的关系?对应边呢?,获得新知,记作如:六边形ABCDEF六边形A1B1C1D1E1F1,各角分别相等、各边成比例的两个多边形叫做相似多边形.,注意:记两个多边形相似时,要把表示对应顶 点的字母写在对应的位置.,相似多边形对应边的比叫做相似比,你注意到没有,相似比与叙述的顺序的关系?,如:六边形ABCDEF六边形A1B1C1D1E1
4、F1,六边形A1B1C1D1E1F1与六边形ABCDEF的相似比为k2=54.,六边形ABCDEF与六边形A1B1C1D1E1F1的相似比为k1=45.,议一议反过来会怎样?,如果两个多边形相似,那么它们的对应角有什么关系?对应边呢?,相似多边形的对应角相等,对应边成比例.,看一看,议一议,(1)观察下面两组图形,图4-12(1)中的两个图形相似吗?为什么?图4-12(2)中的两个图形呢?与同桌交流.,(2)如果两个多边形不相似,那么它们的各角可能对应相等吗?它们的各边可能对应成比例吗?,做一做,直观有时候是不可靠的.,一块长3m、宽1.5m的矩形黑板.镶在其外围的木质边框7.5cm.边框的内外边缘所成的矩形相似吗?为什么?,它们不相似,因为对应边不成比例.,各角分别相等、各边成比例的两个多边形叫做相似多边形,相似多边形对应边的比叫做相似比,如果两个多边形不相似,那么它们的各角可能对应相等,它们的各边可能对应成比例.,相似比与叙述的顺序有关.,相似多边形的对应角相等,对应边成比例.,课堂小结,