2020届高考数学(理)一轮复习讲义 2.5 指数与指数函数.docx

上传人(卖家):和和062 文档编号:342277 上传时间:2020-03-06 格式:DOCX 页数:19 大小:387.14KB
下载 相关 举报
2020届高考数学(理)一轮复习讲义 2.5 指数与指数函数.docx_第1页
第1页 / 共19页
2020届高考数学(理)一轮复习讲义 2.5 指数与指数函数.docx_第2页
第2页 / 共19页
2020届高考数学(理)一轮复习讲义 2.5 指数与指数函数.docx_第3页
第3页 / 共19页
2020届高考数学(理)一轮复习讲义 2.5 指数与指数函数.docx_第4页
第4页 / 共19页
2020届高考数学(理)一轮复习讲义 2.5 指数与指数函数.docx_第5页
第5页 / 共19页
点击查看更多>>
资源描述

1、公众号码:王校长资源站2.5指数与指数函数最新考纲考情考向分析1.了解指数函数模型的实际背景2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算3.理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点,会画底数为2,3,10,的指数函数的图象4.体会指数函数是一类重要的函数模型.直接考查指数函数的图象与性质;以指数函数为载体,考查函数与方程、不等式等交汇问题,题型一般为选择、填空题,中档难度.1分数指数幂(1)规定:正数的正分数指数幂的意义是(a0,m,nN,且为既约分数);正数的负分数指数幂的意义是(a0,m,nN,且为既约分数);0的正分数指数幂等于0;0的负分数指数幂没有

2、意义(2)有理指数幂的运算性质:aaa,(a)a,(ab)ab,其中a0,b0,Q.2指数函数的图象与性质yaxa10a0时,y1;当x0时,0y0时,0y1;当x1(6)在(,)上是增函数(7)在(,)上是减函数概念方法微思考1如图是指数函数(1)yax,(2)ybx,(3)ycx,(4)ydx的图象,则a,b,c,d与1之间的大小关系为_提示cd1ab02结合指数函数yax(a0,a1)的图象和性质说明ax1(a0,a1)的解集跟a的取值有关提示当a1时,ax1的解集为x|x0;当0a1的解集为x|x0题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)()na(nN)()

3、(2)分数指数幂可以理解为个a相乘()(3)函数y32x与y2x1都不是指数函数()(4)若am0,且a1),则mn.()(5)函数y2x在R上为单调减函数()题组二教材改编2化简(x0,y0,且a1)的图象经过点P,则f(1)_.答案解析由题意知a2,所以a,所以f(x)x,所以f(1)1.4已知a,b,c,则a,b,c的大小关系是_答案cb,即ab1,又c1,cba.题组三易错自纠5计算:0_.答案2解析原式12.6若函数f(x)(a23)ax为指数函数,则a_.答案2解析由指数函数的定义可得解得a2.7若函数y(a21)x在(,)上为减函数,则实数a的取值范围是_答案(,1)(1,)解析

4、由题意知0a211,即1a22,得a1或1a0,a1)在1,2上的最大值比最小值大,则a的值为_答案或解析当0a1时,a2a,a或a0(舍去)综上所述,a或.题型一指数幂的运算1若实数a0,则下列等式成立的是()A(2)24 B2a3C(2)01 D答案D解析对于A,(2)2,故A错误;对于B,2a3,故B错误;对于C,(2)01,故C错误;对于D,故D正确2计算:10(2)10_.答案解析原式211010201.3化简:(a0,b0)_.答案解析原式2213101.4化简:_(a0)答案a2解析原式思维升华 (1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意

5、:必须同底数幂相乘,指数才能相加;运算的先后顺序(2)当底数是负数时,先确定符号,再把底数化为正数(3)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数题型二指数函数的图象及应用例1 (1)函数f(x)axb的图象如图所示,其中a,b为常数,则下列结论正确的是()Aa1,b1,b0C0a0D0a1,b0答案D解析由f(x)axb的图象可以观察出,函数f(x)axb在定义域上单调递减,所以0a1,函数f(x)axb的图象是在yax的基础上向左平移得到的,所以b0.(2)已知函数f(x)|2x1|,abf(c)f(b),则下列结论中,一定成立的是()Aa0,b0,c0 Ba0C2a2

6、c D2a2c2答案D解析作出函数f(x)|2x1|的图象,如图,abf(c)f(b),结合图象知,0f(a)1,a0,02a1.f(a)|2a1|12a1,f(c)1,0c1.12cf(c),12a2c1,2a2c2,故选D.思维升华 (1)已知函数解析式判断其图象一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除(2)对于有关指数型函数的图象可从指数函数的图象通过平移、伸缩、对称变换而得到特别地,当底数a与1的大小关系不确定时应注意分类讨论跟踪训练1 (1)已知实数a,b满足等式2 019a2 020b,下列五个关系式:0ba;ab0;0ab;ba0;ab.其中不可能成立的关系式

7、有()A1个 B2个 C3个 D4个答案B解析如图,观察易知,a,b的关系为ab0或0ba或ab0.(2)方程2x2x的解的个数是_答案1解析方程的解可看作函数y2x和y2x的图象交点的横坐标,分别作出这两个函数的图象(如图)由图象得只有一个交点,因此该方程只有一个解题型三指数函数的性质及应用命题点1比较指数式的大小例2 (1)已知a,b,c,则()Abac BabcCbca Dca220,可知b15a15c15,所以bac.(2)若1a”连接)答案3aa3解析易知3a0,0,a30,又由1a0,得0a1,所以(a)3,即a3,因此3aa3.命题点2解简单的指数方程或不等式例3 (1)(201

8、8包头模拟)已知实数a1,函数f(x)若f(1a)f(a1),则a的值为_答案解析当a1时,代入不成立故a的值为.(2)若偶函数f(x)满足f(x)2x4(x0),则不等式f(x2)0的解集为_答案x|x4或x0解析f(x)为偶函数,当x0,则f(x)f(x)2x4,f(x)当f(x2)0时,有或解得x4或x4或x0),则yt22t的单调增区间为1,),令2x1,得x0,又y2x在R上单调递增,所以函数f(x)4x2x1的单调增区间是0,)(3)若函数f(x)有最大值3,则a_.答案1解析令h(x)ax24x3,yh(x),由于f(x)有最大值3,所以h(x)应有最小值1,因此必有解得a1,即

9、当f(x)有最大值3时,a的值为1.思维升华 (1)利用指数函数的函数性质比较大小或解方程、不等式,最重要的是“同底”原则,比较大小还可以借助中间量;(2)求解与指数函数有关的复合函数问题,要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断跟踪训练2 (1)函数f(x)x2bxc满足f(x1)f(1x),且f(0)3,则f(bx)与f(cx)的大小关系是()Af(bx)f(cx) Bf(bx)f(cx)Cf(bx)f(cx) D与x有关,不确定答案A解析f(x1)f(1x),f(x)关于x1对称,易知b2,c3,当x0时,b0c01,f(bx)f(cx

10、),当x0时,3x2x1,又f(x)在(1,)上单调递增,f(bx)f(cx),当x0时,3x2x1,又f(x)在(,1)上单调递减,f(bx)f(cx),综上,f(bx)f(cx)(2)已知f(x)2x2x,a,b,则f(a),f(b)的大小关系是_答案f(b)b,f(a)f(b)(3)若不等式12x4xa0在x(,1时恒成立,则实数a的取值范围是_答案解析从已知不等式中分离出实数a,得a.函数yxx在R上是减函数,当x(,1时,xx,从而得.故实数a的取值范围为.1设a0.60.6,b0.61.5,c1.50.6,则a,b,c的大小关系是()Aabc Bacb Cbac Dbca答案C解析

11、因为函数y0.6x在R上单调递减,所以b0.61.5a0.60.61,所以ba0时,1bxax,则()A0ba1 B0ab1C1ba D1a0时,11.当x0时,bx0时,x1.1,ab,1b0,a1)满足f(1),则f(x)的单调递减区间是()A(,2 B2,)C2,) D(,2答案B解析由f(1),得a2,所以a或a(舍去),即f(x)|2x4|.由于y|2x4|在(,2上单调递减,在2,)上单调递增,所以f(x)在(,2上单调递增,在2,)上单调递减故选B.6已知函数f(x)的值域是8,1,则实数a的取值范围是()A(,3 B3,0) C3,1 D3答案B解析当0x4时,f(x)8,1,

12、当ax0时,f(x),所以8,1,即81,即3aa”是“函数f(x)xm的图象不过第三象限”的必要不充分条件,则实数a能取的最大整数为_答案1解析f(0)m,函数f(x)的图象不过第三象限等价于m0,即m,“ma”是“m”的必要不充分条件,ax4的解集为_答案(1,4)解析原不等式等价于2x4,又函数y2x为增函数,x22xx4,即x23x40,1x4.9当x(,1时,不等式(m2m)4x2x0恒成立,则实数m的取值范围是_答案(1,2)解析原不等式变形为m2mx,因为函数yx在(,1上是减函数,所以x12,当x(,1时,m2mx恒成立等价于m2m2,解得1m2.10已知函数f(x)2x,函数

13、g(x)则函数g(x)的最小值是_答案0解析当x0时,g(x)f(x)2x为单调增函数,所以g(x)g(0)0;当xg(0)0,所以函数g(x)的最小值是0.11已知9x103x90,求函数yx14x2的最大值和最小值解由9x103x90,得(3x1)(3x9)0,解得13x9,即0x2.令xt,则t1,y4t24t2421.当t,即x1时,ymin1;当t1,即x0时,ymax2.12已知函数f(x)bax(其中a,b为常量,且a0,a1)的图象经过点A(1,6),B(3,24)(1)求f(x)的表达式;(2)若不等式xxm0在(,1上恒成立,求实数m的取值范围解(1)因为f(x)的图象过A

14、(1,6),B(3,24),所以所以a24,又a0,所以a2,b3.所以f(x)32x.(2)由(1)知a2,b3,则当x(,1时,xxm0恒成立,即mxx在(,1上恒成立又因为yx与yx在(,1上均为减函数,所以yxx在(,1上也是减函数,所以当x1时,yxx有最小值,所以m,即m的取值范围是.13(2018呼和浩特调研)设函数f(x)则满足f(f(a)2f(a)的a的取值范围是()A. B0,1 C. D1,)答案C解析令f(a)t,则f(t)2t.当t1时,3t12t,令g(t)3t12t,则g(t)32tln 2,当t0,g(t)在(,1)上单调递增,即g(t)g(1)0,则方程3t1

15、2t无解当t1时,2t2t成立,由f(a)1,得a1,且3a11,解得a1;a1,且2a1,解得a1.综上可得a的取值范围是.故选C.14若函数f(x)2|xa|(aR)满足f(1x)f(1x),f(x)在区间m,n上的最大值记为f(x)max,最小值记为f(x)min,若f(x)maxf(x)min3,则nm的取值范围是_答案(0,4解析因为f(1x)f(1x),所以f(x)的图象关于直线x1对称,所以a1,所以f(x)2|x1|.作出函数yf(x)的图象如图所示当mn1或1mn时,离对称轴越远,m与n的差越小,由y2x1与y21x的性质知极限值为0.当m1n时,函数f(x)在区间m,n上的

16、最大值与最小值的差为f(x)maxf(x)min2|2|203,则nm取得最大值2(2)4,所以nm的取值范围是(0,415设f(x)|2x11|,af(c),则2a2c_4.(选填“”“”“”)答案解析f(x)在(,1上是减函数,在1,)上是增函数,故结合条件知必有a1.若c1,则2a2,2c2,故2a2c1,则由f(a)f(c),得12a12c11,即2c12a12,即2a2c4.综上知,总有2a2c4.16已知函数f(x)4(1x2)(1)若,求函数f(x)的值域;(2)若方程f(x)0有解,求实数的取值范围解(1)f(x)42x2x4(1x2)设tx,得g(t)t22t4.当时,g(t)t23t42.所以g(t)maxg,g(t)ming.所以f(x)max,f(x)min,故函数f(x)的值域为.(2)方程f(x)0有解可转化为22x(1x2)设(x)22x,当2x,即x1时,(x)min2;当2x4,即x2时,(x)max.函数(x)的值域为.故实数的取值范围是.公众号码:王校长资源站

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 高考专区 > 一轮复习
版权提示 | 免责声明

1,本文(2020届高考数学(理)一轮复习讲义 2.5 指数与指数函数.docx)为本站会员(和和062)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|