2019届高考数学一轮复习第八章立体几何8.4直线平面平行的判定与性质课件(文科)新人教B版.ppt

上传人(卖家):flying 文档编号:35107 上传时间:2018-08-15 格式:PPT 页数:34 大小:2.01MB
下载 相关 举报
2019届高考数学一轮复习第八章立体几何8.4直线平面平行的判定与性质课件(文科)新人教B版.ppt_第1页
第1页 / 共34页
2019届高考数学一轮复习第八章立体几何8.4直线平面平行的判定与性质课件(文科)新人教B版.ppt_第2页
第2页 / 共34页
2019届高考数学一轮复习第八章立体几何8.4直线平面平行的判定与性质课件(文科)新人教B版.ppt_第3页
第3页 / 共34页
2019届高考数学一轮复习第八章立体几何8.4直线平面平行的判定与性质课件(文科)新人教B版.ppt_第4页
第4页 / 共34页
2019届高考数学一轮复习第八章立体几何8.4直线平面平行的判定与性质课件(文科)新人教B版.ppt_第5页
第5页 / 共34页
点击查看更多>>
资源描述

1、8.4直线、平面平行的判定与性质,-2-,知识梳理,双基自测,2,3,1,自测点评,1.平行直线(1)平行公理:过直线外一点一条直线和已知直线平行.(2)基本性质4(空间平行线的传递性):平行于的两条直线互相平行.(3)定理:如果一个角的两边与另一个角的两边,并且,那么这两个角相等.(4)空间四边形:顺次连接的四点A,B,C,D所构成的图形,叫做空间四边形.,有且只有,同一条直线,分别对应平行,方向相同,不共面,-3-,知识梳理,双基自测,自测点评,2,3,1,2.直线与平面平行的判定与性质,a?,b?,ab,a,a?,=b,-4-,知识梳理,双基自测,自测点评,2,3,1,a?,b?,ab=

2、P,a,b,=a,=b,3.平面与平面平行的判定与性质,2,-5-,知识梳理,双基自测,3,4,1,5,自测点评,1.下列结论正确的打“”,错误的打“”.(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.()(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.()(3)若直线a与平面内无数条直线平行,则a.()(4)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.()(5)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(),答案,-6-,知识梳理,双基自测,自测点评,2,3,4,1,5,2.已知正方体ABCD-A1B1C1D

3、1,下列结论中,正确的是(填序号).AD1BC1;平面AB1D1平面BDC1;AD1DC1;AD1平面BDC1.,答案,解析,-7-,知识梳理,双基自测,自测点评,2,3,4,1,5,3.已知P是正方体ABCD-A1B1C1D1棱DD1上任意一点(不与端点重合),则在正方体的12条棱中,与平面ABP平行的直线是.,答案,解析,-8-,知识梳理,双基自测,自测点评,2,3,4,1,5,4. 在四面体ABCD中,M,N分别是平面ACD,BCD的重心,则四面体的四个面中与MN平行的是.,答案,解析,-9-,知识梳理,双基自测,自测点评,2,3,4,1,5,5.如图所示,在正四棱柱ABCD-A1B1C

4、1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足条件时,有MN平面B1BDD1.,答案,解析,-10-,知识梳理,双基自测,自测点评,1.推证线面平行时,一定要说明一条直线在平面外,一条直线在平面内.2.推证面面平行时,一定要说明一个平面内的两条相交直线平行于另一个平面.3.利用线面平行的性质定理把线面平行转化为线线平行时,必须说明经过已知直线的平面与已知平面相交,则该直线与交线平行.,-11-,考点1,考点2,考点3,例1(1)设m,n是两条不同的直线,是两个不同的平面,下列命题中正确的是()A.若,m?,n?,

5、则mnB.若,m?,n?,则mnC.若mn,m?,n?,则D.若m,mn,n,则(2)设m,n表示不同直线,表示不同平面,则下列结论中正确的是()A.若m,mn,则nB.若m?,n?,m,n,则C.若,m,mn,则nD.若,m,nm,n?,则n思考如何借助几何模型来找平行关系?,答案,解析,-12-,考点1,考点2,考点3,解题心得线面平行、面面平行的命题真假判断多以小题出现,处理方法是数形结合,画图或结合正方体等有关模型来解题.,-13-,考点1,考点2,考点3,对点训练1(1)若直线ab,且直线a平面,则直线b与平面的位置关系是()A.b?B.bC.b?或bD.b与相交或b?或b(2)给出

6、下列关于互不相同的直线l,m,n和平面,的三个命题:若l与m为异面直线,l?,m?,则;若,l?,m?,则lm;若=l,=m,=n,l,则mn.其中真命题的个数为()A.3 B.2 C.1 D.0,答案,解析,-14-,考点1,考点2,考点3,例2如图,四棱锥P-ABCD中,PA底面ABCD,ADBC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN平面PAB;(2)求四面体N-BCM的体积.思考证明线面平行的关键是什么?,-15-,考点1,考点2,考点3,-16-,考点1,考点2,考点3,-17-,考点1,考点2,考点3,解题心得证明线面

7、平行的关键及探求线线平行的方法:(1)证明直线与平面平行的关键是设法在平面内找到一条与已知直线平行的直线;(2)利用几何体的特征,合理利用三角形中位线定理、线面平行的性质,或者构造平行四边形、寻找比例式证明两直线平行;(3)注意说明已知的直线不在平面内,即三个条件缺一不可.,-18-,考点1,考点2,考点3,对点训练2(1)如图,G,N,M,H分别是三棱柱的顶点或所在棱的中点,则直线GH,MN是异面直线的图形有.(填上所有正确答案 的序号),-19-,考点1,考点2,考点3,(2)如图,在正方体ABCD-A1B1C1D1中,M,N分别是A1B1,B1C1的中点.问:AM和CN是不是异面直线?说

8、明理由.D1B和CC1是不是异面直线?说明理由.,-20-,考点1,考点2,考点3,(1)证明: 连接AC,设ACBD=O,连接OE,四边形ABCD为矩形,O为AC的中点,在ASC中,E为AS的中点,SCOE,又OE?平面BDE,SC?平面BDE,SC平面BDE.,-21-,考点1,考点2,考点3,(2)解: 过点E作EHAB,垂足为H,BCAB,且BCSB,ABSB=B,BC平面SAB,EH?平面ABS,EHBC,又EHAB,ABBC=B,EH平面ABCD,在SAB中,取AB中点M,连接SM,SA=SB,SMAB,SM=1.,-22-,考点1,考点2,考点3,例3一个正方体的平面展开图及该正

9、方体的直观图的示意图如图所示.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG与平面ACH的位置关系,并证明你的结论.思考证明面面平行的常用方法有哪些?,-23-,考点1,考点2,考点3,解 (1)点F,G,H的位置如图所示.(2)平面BEG平面ACH.证明如下:因为ABCD-EFGH为正方体,所以BCFG,BC=FG,又FGEH,FG=EH,所以BCEH,BC=EH,于是四边形BCHE为平行四边形.所以BECH.又CH?平面ACH,BE?平面ACH,所以BE平面ACH.同理BG平面ACH.又BEBG=B,所以平面BEG平面ACH.,-24-,考点1,考点

10、2,考点3,解题心得判定面面平行的常用方法:(1)利用面面平行的判定定理;(2)面面平行的传递性(,?);(3)利用线面垂直的性质(l,l ?).,-25-,考点1,考点2,考点3,对点训练3如图所示,在三棱锥S-ABC中,平面SAB平面SBC,ABBC,AS=AB.过点A作AFSB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG平面ABC;(2)BCSA.,-26-,考点1,考点2,考点3,证明: (1)因为AS=AB,AFSB,垂足为F,所以F是SB的中点.又因为E是SA的中点,所以EFAB.因为EF?平面ABC,AB?平面ABC,所以EF平面ABC.同理EG平面ABC

11、.又EFEG=E,所以平面EFG平面ABC.(2)因为平面SAB平面SBC,且交线为SB,又AF?平面SAB,AFSB,所以AF平面SBC.因为BC?平面SBC,所以AFBC.又因为ABBC,AFAB=A,AF,AB?平面SAB,所以BC平面SAB.因为SA?平面SAB,所以BCSA.,-27-,考点1,考点2,考点3,1.平行关系的转化方向如图所示:2.直线与平面平行的主要判定方法:(1)定义法;(2)判定定理;(3)面与面平行的性质.3.平面与平面平行的主要判定方法:(1)定义法;(2)判定定理;(3)推论;(4)a,a?.,-28-,考点1,考点2,考点3,1.在推证线面平行时,一定要强

12、调直线不在平面内,否则会出现错误.2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.,-29-,审题答题指导如何作答平行关系证明题典例(12分)如图,几何体E-ABCD是四棱锥,ABD为正三角形,CB=CD,ECBD.(1)求证:BE=DE;(2)若BCD=120,M为线段AE的中点,求证:DM平面BEC.,-30-,规范解答(1)如图,取BD的中点O,连接CO,EO.由于CB=CD,所以COBD.(1分)又ECBD,E

13、CCO=C,CO,EC?平面EOC,所以BD平面EOC,(2分)因此BDEO.(3分)又O为BD的中点,所以BE=DE.(5分),-31-,(2)证法一:如图,取AB的中点N,连接DM,DN,MN.因为M是AE的中点,所以MNBE.(6分)又MN?平面BEC,BE?平面BEC,所以MN平面BEC.(7分)因为ABD为正三角形,所以BDN=30.又CB=CD,BCD=120,所以CBD=30,所以DNBC.(9分)因为DN?平面BEC,BC?平面BEC,所以DN平面BEC.又MNDN=N,故平面DMN平面BEC,(11分)因为DM?平面DMN,所以DM平面BEC.(12分),-32-,证法二:如

14、图,延长AD,BC交于点F,连接EF.因为CB=CD,BCD=120,所以CBD=30.(7分)因为ABD为正三角形,所以ABD=60,ABC=90.因此AFB=30,所以AB=12AF.(9分)又AB=AD,所以D为线段AF的中点.(10分)连接DM,由点M是线段AE的中点,因此DMEF.(11分)因为DM?平面BEC,EF?平面BEC,所以DM平面BEC.(12分),-33-,答题模板证明线面平行问题的答题模板(一)第一步:作(找)出所证线面平行中的平面内的一条直线;第二步:证明线线平行;第三步:根据线面平行的判定定理证明线面平行;第四步:反思回顾,检查关键点及答题规范.证明线面平行问题的答题模板(二)第一步:在多面体中作出要证线面平行中的线所在的平面;第二步:利用线面平行的判定定理证明所作平面内的两条相交直线分别与所证平面平行;第三步:证明所作平面与所证平面平行;第四步:转化为线面平行;第五步:反思回顾,检查答题规范.,-34-,反思提升立体几何解答题的过程要讲究步骤完整、格式要符合要求,每步推理要有理有据,不可跨度太大,以免漏掉得分点.本题易忽视DM?平面EBC,造成步骤不完整而失分.,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 高考专区 > 一轮复习
版权提示 | 免责声明

1,本文(2019届高考数学一轮复习第八章立体几何8.4直线平面平行的判定与性质课件(文科)新人教B版.ppt)为本站会员(flying)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|