1、班级 姓名 考号 高一数学月考题(命题人:翟全福)一单选题:(每小题6分,共42分)。1.某城区有农民、工人、知识分子家庭共计2 004户,其中农民家庭1 600户,工人家庭303户,现要从中抽取容量为40的样本,则在整个抽样过程中,可以用到下列抽样方法:简单随机抽样,系统抽样,分层抽样中的( )A.B.C.D.2.某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人.现采用分层抽样抽取容量为30的样本,则抽取的各职称的人数分别为( )A.5,10,15 B.3,9,18C.3,10,17D.5,9,163.下列抽样实验中,最适宜用系统抽样的是( )A.某市的4个区共有2
2、 000名学生且4个区的学生人数之比为3282,从中抽取200人入样B.某厂生产的2 000个电子元件中随机抽取5个入样C.从某厂生产的2 000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样4.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )A.4B.5C.6D.75.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机
3、抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,270,使用系统抽样时,将学生统一随机编号为1,2,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:7,34,61,88,115,142,169,196,223,250;5,9,100,107,111,121,180,195,200,265;11,38,65,92,119,146,173,200,227,254;30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是( )A.、都不能为系统抽样 B.、都不能为分层抽样C
4、.、都可能为系统抽样 D.、都可能为分层抽样6.甲、乙两名同学在5次体育测试中的成绩统计的茎叶图如图所示,若甲、乙两人的平均成绩分别是x甲、x乙,则下列结论正确的是( )A.x甲x乙;乙比甲成绩稳定B.x甲x乙;甲比乙成绩稳定C.x甲x乙;乙比甲成绩稳定D.x甲x乙;甲比乙成绩稳定7.某化工厂为预测产品的回收率y,需要研究它和原料有效成分含量x之间相关关系,现取8对观测值,计算得=52, =228, =478, =1 849,则其线性回归方程为( )A.y=11.47+2.62xB.y=-11.47+2.62xC.y=2.62+11.47xD.y=11.47-2.62x二.填空题(每小题6分,
5、共18分)8.将参加数学竞赛的1 000名学生编号如下0001,0002,0003,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,0020,从第一部分随机抽取一个号码为0015,则第40个号码为 .9.(已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a、b的取值分别是 .使用年限x23456维修费用y2.23.85.56.57.010.已知关于某设备的使用年限x与所支出的维修费用y(万元),有如下统计资料:若y对x呈线性相关关系,则
6、回归直线方程y=bx+a表示的直线一定过定点 .三.简答题:(共4小题,共40分)11.为了解A,B两种轮胎的性能,某汽车制造厂分别从这两种轮胎中随机抽取了8个进行测试,下面列出了每一个轮胎行驶的最远里程数(单位:1 000 km)轮胎A96,112,97,108,100,103,86,98轮胎B108,101,94,105,96,93,97,106(1)分别计算A,B两种轮胎行驶的最远里程的平均数、中位数;(2)分别计算A,B两种轮胎行驶的最远里程的极差、标准差;(3)根据以上数据你认为哪种型号的轮胎性能更加稳定?12.某赛季甲、乙两名篮球运动员每场比赛得分情况如下:甲的得分:12,15,2
7、4,25,31,31,36,36,37,39,44,49,50;乙的得分:8,13,14,16,23,26,28,33,38,39,59.(1)制作茎叶图,并对两名运动员的成绩进行比较;(2)计算上述两组数据的平均数和方差,并比较两名运动员的成绩和稳定性;(3)能否说明甲的成绩一定比乙好,为什么?13.在育民中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.(1)求第二小组的频率,并补全这个频率分布直方图;(
8、2)求这两个班参赛的学生人数是多少?(3)这两个班参赛学生的成绩的中位数应落在第几小组内?(不必说明理由)14. 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据. x3456y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程=x+;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:32.5+43+54+64.5=66.5)班级 姓名 考号 高一数学月考题一单
9、选题:(每小题6分,共42分)。1.某城区有农民、工人、知识分子家庭共计2 004户,其中农民家庭1 600户,工人家庭303户,现要从中抽取容量为40的样本,则在整个抽样过程中,可以用到下列抽样方法:简单随机抽样,系统抽样,分层抽样中的( )A.B.C.D.答案D2.某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人.现采用分层抽样抽取容量为30的样本,则抽取的各职称的人数分别为( )A.5,10,15 B.3,9,18C.3,10,17D.5,9,16答案B3.下列抽样实验中,最适宜用系统抽样的是( )A.某市的4个区共有2 000名学生,且4个区的学生人数之比为3
10、282,从中抽取200人入样B.某厂生产的2 000个电子元件中随机抽取5个入样C.从某厂生产的2 000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样答案 C4.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )A.4B.5C.6D.7答案C5.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三
11、种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,270,使用系统抽样时,将学生统一随机编号为1,2,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:7,34,61,88,115,142,169,196,223,250;5,9,100,107,111,121,180,195,200,265;11,38,65,92,119,146,173,200,227,254;30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是( )A.、都不能为系统抽样B.、都不能为分层抽样C.、都可能为系统抽样D.、都
12、可能为分层抽样答案 D6.(2008菏泽模拟)甲、乙两名同学在5次体育测试中的成绩统计的茎叶图如图所示,若甲、乙两人的平均成绩分别是x甲、x乙,则下列结论正确的是( )A.x甲x乙;乙比甲成绩稳定B.x甲x乙;甲比乙成绩稳定C.x甲x乙;乙比甲成绩稳定D.x甲x乙;甲比乙成绩稳定答案A7.某化工厂为预测产品的回收率y,需要研究它和原料有效成分含量x之间的相关关系,现取8对观测值,计算,得=52, =228, =478, =1 849,则其线性回归方程为( )A.y=11.47+2.62x B.y=-11.47+2.62xC.y=2.62+11.47x D.y=11.47-2.62x答案A二.填
13、空题(每小题6分,共18分)8.将参加数学竞赛的1 000名学生编号如下0001,0002,0003,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,0020,从第一部分随机抽取一个号码为0015,则第40个号码为 .答案 07959.(2008上海理,9)已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a、b的取值分别是 .答案 10.5、10.510.已知关于某设备的使用年限x与所支出的维修费用y(万元),有如下统计资料:使用年限x
14、23456维修费用y2.23.85.56.57.0若y对x呈线性相关关系,则回归直线方程y=bx+a表示的直线一定过定点 .答案 (4,5)三.简答题:(共4小题,共40分)11. 为了解A,B两种轮胎的性能,某汽车制造厂分别从这两种轮胎中随机抽取了8个进行测试,下面列出了每一个轮胎行驶的最远里程数(单位:1 000 km)轮胎A96,112,97,108,100,103,86,98轮胎B108,101,94,105,96,93,97,106(1)分别计算A,B两种轮胎行驶的最远里程的平均数、中位数;(2)分别计算A,B两种轮胎行驶的最远里程的极差、标准差;(3)根据以上数据你认为哪种型号的轮
15、胎性能更加稳定?解 (1)A轮胎行驶的最远里程的平均数为:=100,中位数为: =99;B轮胎行驶的最远里程的平均数为:=100,中位数为:=99.(2)A轮胎行驶的最远里程的极差为:112-86=26,标准差为:s=7.43;B轮胎行驶的最远里程的极差为:108-93=15,标准差为:s=5.43.(3)由于A和B的最远行驶里程的平均数相同,而B轮胎行驶的最远里程的极差和标准差较小,所以B轮胎性能更加稳定.12.某赛季甲、乙两名篮球运动员每场比赛得分情况如下:甲的得分:12,15,24,25,31,31,36,36,37,39,44,49,50;乙的得分:8,13,14,16,23,26,2
16、8,33,38,39,59.(1)制作茎叶图,并对两名运动员的成绩进行比较;(2)计算上述两组数据的平均数和方差,并比较两名运动员的成绩和稳定性;(3)能否说明甲的成绩一定比乙好,为什么?解 (1)制作茎叶图如下:从茎叶图上可看出,甲运动员发挥比较稳定,总体得分情况比乙好.(2)甲=33,127.23,乙=27,199.09,甲乙, ,甲运动员总体水平比乙好,发挥比乙稳定.(3)不能说甲的水平一定比乙好,因为上述是甲、乙某赛季的得分情况,用样本估计总体也有一定的偶然性,并不能说一定准确反映总体情况.13.在育民中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成
17、五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.(1)求第二小组的频率,并补全这个频率分布直方图;(2)求这两个班参赛的学生人数是多少?(3)这两个班参赛学生的成绩的中位数应落在第几小组内?(不必说明理由)解 (1)各小组的频率之和为1.00,第一、三、四、五小组的频率分别是0.30,0.15,0.10,0.05.第二小组的频率为:1.00-(0.30+0.15+0.10+0.05)=0.40.落在59.569.5的第二小组的小长方形的高=0.04.则补全的直方图如图所示.(2)设九年级两
18、个班参赛的学生人数为x人.第二小组的频数为40人,频率为0.40,=0.40,解得x=100(人).所以九年级两个班参赛的学生人数为100人.(3)因为0.3100=30,0.4100=40,0.15100=15,0.10100=10,0.05100=5,即第一、第二、第三、第四、第五小组的频数分别为30,40,15,10,5,所以九年级两个班参赛学生的成绩的中位数应落在第二小组内.14. 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据. x3456y新课 标 第 一 网2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程=x+;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:32.5+43+54+64.5=66.5)解 (1)散点图如下图: (2)=4.5,=3.5=32.5+43+45+64.5=66.5.=32+42+52+62=86b=0.7a=-b=3.5-0.74.5=0.35.所求的线性回归方程为y=0.7x+0.35.(3)现在生产100吨甲产品用煤y=0.7100+0.35=70.35,降低90-70.35=19.65吨标准煤.