1、探究探究1:从甲、乙、丙从甲、乙、丙3名同学中选出名同学中选出2名同学。名同学。(1)选两名同学参一项活动选两名同学参一项活动,有多少种不同选法?有多少种不同选法?(2)若这两名同学分别参加上、下午的一项活动若这两名同学分别参加上、下午的一项活动,又有多少种选法?又有多少种选法?(3)第第1,2问选法上有什么区别?问选法上有什么区别?问题探究问题探究 从从n个不同元素中取出个不同元素中取出 m(m n)个元素个元素,叫做从叫做从n个不同元素中取出个不同元素中取出m个元素的一个个元素的一个组合。组合。从从n个不同元素中取出个不同元素中取出 m(m n)个元素的所有不个元素的所有不同组合的个数,叫
2、做从同组合的个数,叫做从n个不同元素中取出个不同元素中取出m个元素的个元素的组合数组合数,用,用 表示,也可以用符号表示,也可以用符号 表示。表示。mnC mn知识归纳知识归纳思考:思考:排列和组合之间的联系和区别是什么?排列和组合之间的联系和区别是什么?思考:思考:排列和组合之间的联系和区别是什么?排列和组合之间的联系和区别是什么?联系:联系:两者都是从两者都是从n个元素中取出个元素中取出m个元素个元素区别:区别:1、排列和顺序相关,组合和顺序无关;、排列和顺序相关,组合和顺序无关;2、元素相同且顺序也相同,排列才相同;、元素相同且顺序也相同,排列才相同;元素相同,不管顺序是否相同,组合就是
3、相同的。元素相同,不管顺序是否相同,组合就是相同的。探究探究2.从从a、b、c、d这这4个元素中取出个元素中取出3个不同元素个不同元素 (1)将这将这3个不同元素形成一个组合个不同元素形成一个组合,则不同则不同的组合有多少种?的组合有多少种?(2)将这将这3个不同元素形成一个排列个不同元素形成一个排列,则不同的则不同的排列有多少种?排列有多少种?a b ca b da c db c d组合组合排列排列a b c b a c c a b a c b b c a c b aa b d b a d d a b a d b b d a d b aa d c d a c c a d a c d d c
4、a c d a d b c b d c c d b d c b b c d c b d333434333432 341 34 ACAAC 即即个不同元素全排列个不同元素全排列、将每一个组合中的、将每一个组合中的个元素的组合数个元素的组合数个不同元素取出个不同元素取出、从、从数可以分两步完成:数可以分两步完成:个的排列个的排列个不同元素取出个不同元素取出其意义为:求从其意义为:求从知识归纳知识归纳 一般的,从一般的,从n个不同元素取出个不同元素取出m个元素的排列数可个元素的排列数可以看成:以看成:1、从、从n个元素中取出个元素中取出m个元素,共个元素,共mnCmmAmmmnmnACA 故故!)1
5、).(2)(1(mmnnnnAACmmmnmn 故故)!(!mnmn 10 nC规规定定2、将取出、将取出m个元素做全排列,共个元素做全排列,共运用运用1.计算:计算:;C)4(;C)3(;C)2(;C)1(0101010710310 新知运用新知运用运用运用2.),(:*nmNnm 证明证明 =-;CC)1(mnnmn运用运用2.;CCC)2(1mnmnm1n-+=)nm,Nn,m(*:证明证明1m1nmnC1n1mC3+=)(运用运用2.)nm,Nn,m(*:证明证明 例例1(1)平面内有平面内有10个点个点,以其中每以其中每2个点为端个点为端点的线段共有多少条?点的线段共有多少条?(2)
6、平面内有平面内有10个点个点,以其中每以其中每2个点为端点的有个点为端点的有向线段共有多少条?向线段共有多少条?例例2 在在100件产品中件产品中,有有98件合格品,件合格品,2件次品。从件次品。从这这100件产品中任意抽取件产品中任意抽取3件。件。(1)有多少种不同抽法?有多少种不同抽法?(2)抽出的抽出的3件中恰好有件中恰好有1件是次品的抽法有多少种?件是次品的抽法有多少种?(3)抽出的抽出的3件中至少有件中至少有1件是次品的抽法有多少种?件是次品的抽法有多少种?运用运用3.一位教练的足球队共有一位教练的足球队共有17名初级学员,他们名初级学员,他们中以前没有一个参加比赛,按照足球规则,比赛时一个中以前没有一个参加比赛,按照足球规则,比赛时一个足球队的上场队员是足球队的上场队员是11人,问:人,问:(1)这位教练从这位教练从17名学员中可以形成多少种上场方案?名学员中可以形成多少种上场方案?(2)如果在选出如果在选出11名队员时还要确定其中的守门员,名队员时还要确定其中的守门员,则教练员有多少种方式做这件事?则教练员有多少种方式做这件事?例例3 甲乙丙甲乙丙3项任务,甲需项任务,甲需2人承担,乙、丙各人承担,乙、丙各需需1人承担,从人承担,从10人中选派人中选派4人承担人承担3项任务,不同选项任务,不同选法有法有 ()A.1260 B.2025 C.2520 D.5040C