1、人教人教版版 数学数学 八八年级年级 上册上册 地地球、木星、太阳可以近似地看做是球体球、木星、太阳可以近似地看做是球体.木星、太阳木星、太阳的半径分别约是地球的的半径分别约是地球的10倍和倍和102倍,它们的体积分别约是倍,它们的体积分别约是地球的多少倍?地球的多少倍?导入新知导入新知1.理解并掌握理解并掌握幂的乘方法则幂的乘方法则.2.能熟练地运用幂的乘方的法则进行化简和能熟练地运用幂的乘方的法则进行化简和计算计算.素养目标素养目标10103边长2边长边长S正请请分别求出下列两个正方形的面积?分别求出下列两个正方形的面积?幂的乘方的幂的乘方的法则法则(较较简单简单的的)S小10101021
2、03103S正正=(103)2探究新知探究新知知识点 1探究探究=106请请根据乘方的意义及同底数幂的乘法填根据乘方的意义及同底数幂的乘法填空空.观察计算的结果,你能发现什么规律?证明你的猜想观察计算的结果,你能发现什么规律?证明你的猜想.(32)3=_ _ _ =3()+()+()=3()()=3()323232222236猜想:猜想:(am)n=_.amn探究新知探究新知(am)nmnau幂的乘方法则(am)n=amn(m,n都是正整数)即幂的乘方,底数_,指数_.不变相乘=amamamamn个个am=am+m+mn个个m探究新知探究新知证证明猜想明猜想运算运算种类种类公式公式法则法则中运
3、算中运算计算结果计算结果底数底数指数指数同底数幂乘法同底数幂乘法幂的乘方幂的乘方乘法乘法乘方乘方不变不变不变不变指数指数相加相加指数指数相乘相乘am an=am+n 探究新知探究新知例例1 计算:计算:解解:(1)(103)5=1035 =1015;(2)(a2)4=a24=a8;(3)(am)2=am2=a2m;(3)(am)2;(4)(x4)3=x43=x12.(1)(103)5;(2)(a2)4;(4)(x4)3;(6)(x)43.(5)(x+y)23;(5)(x+y)23=(x+y)23=(x+y)6;(6)(x)43=(x)43=(x)12 =x12.素养考点素养考点 1幂幂的乘方的
4、法则的应的乘方的法则的应用用探究新知探究新知 方法点拨 运运用幂的乘方法则进行计算时,一定不要将幂用幂的乘方法则进行计算时,一定不要将幂的乘方与同底数幂的乘法混淆,在幂的乘方中,底的乘方与同底数幂的乘法混淆,在幂的乘方中,底数可以是单项式,也可以是多项式在运算时,注数可以是单项式,也可以是多项式在运算时,注意把底数看成一个整体,同时注意意把底数看成一个整体,同时注意“负号负号”.”.探究新知探究新知1.计算:计算:(103)5;(b3)4;(xn)3;(x7)7=1035=1015=b34=b12=x3n=x77=x49(x)33=(x)33=x9(x)34=(x)34=(x)12=x12巩固
5、练习巩固练习(a5)2表示表示2个个a5相乘相乘,结果没有负号,结果没有负号.(a2)5和和(a5)2的结果相同吗的结果相同吗?为什么为什么?不相同.(a2)5表示表示5个个a2相乘相乘,其结果带有负号,其结果带有负号.,(),mnmnmnaaa n为偶数n为奇偶数知识点 2幂的乘方的幂的乘方的法则法则(较较复杂复杂的的)探究新知探究新知想一想想一想下下面这道题该怎么进行计算呢?面这道题该怎么进行计算呢?幂的乘方幂的乘方:(a6)4=a2442 3()a()mmnppnaa(y5)22=_=_(x5)mn=_=_练一练:(y10)2y20(x5m)nx5mn探究新知探究新知例例2 计算:计算:
6、(1)(x4)3x6;(2)a2(a)2(a2)3a10.解解:(1)(x4)3x6=x12x6=x18;(2)a2(a)2(a2)3a10 =a2a2a6a10 =a10a10=0.忆一忆有理数混合运算的顺序先乘方,再乘除先乘方,再乘除,最后算加减底数的符号要统一素养考素养考点点 2有关幂的乘方的混合运算有关幂的乘方的混合运算探究新知探究新知 方法点拨 与与幂的乘方有关的混合运算中,一般幂的乘方有关的混合运算中,一般先算先算幂的乘方幂的乘方,再算,再算同底数幂的乘法同底数幂的乘法,最后,最后算加减算加减,然后然后合并同类项合并同类项探究新知探究新知2.计算:计算:(1)(x3)4x2;(2)
7、2(x2)n(xn)2;(3)(x2)37;(4)(m)32(m2)4.(1)原式原式=x12 x2 =x14.(2)原式原式=2x2n x2n =x2n.(3)原式原式=(x2)21 =x42.解解:(4)原式原式=(m)32m24 =m6m8 =m14.巩固练习巩固练习例例3 已知已知10m3,10n2,求下列各式的值,求下列各式的值.(1)103m;(2)102n;(3)103m2n解:解:(1)103m(10m)33327;(2)102n(10n)2224;(3)103m2n103m102n274108.方法总结:方法总结:此类题的关键是逆用幂的乘方及同底数幂的乘法公式,此类题的关键是
8、逆用幂的乘方及同底数幂的乘法公式,将所求值的式子正确变形,然后代入已知条件求值即可将所求值的式子正确变形,然后代入已知条件求值即可.素养考点素养考点 3指数中含有字母的幂的乘方的计算指数中含有字母的幂的乘方的计算探究新知探究新知(1)已知已知x2n3,求,求(x3n)4的值;的值;(2)已知已知2x5y30,求,求4x32y的值的值解:解:(1)(x3n)4x12n(x2n)636729.(2)2x5y30,2x5y3,4x32y(22)x(25)y22x25y22x5y238.3.完成下列题完成下列题目:目:巩固练习巩固练习例例4 比较比较3500,4400,5300的大小的大小.解析:解析
9、:这三个幂的这三个幂的底数不同底数不同,指数也不相同指数也不相同,不能直接比较大不能直接比较大小小,通过观察通过观察,发现指数都是发现指数都是100100的倍数的倍数,可可以考虑逆用幂的乘以考虑逆用幂的乘方法则方法则.解解:3500=(35)100=243100,4400=(44)100=256100,5300=(53)100=125100.256100243100125100,440035005300.素养考点素养考点 4幂的大小的比较幂的大小的比较探究新知探究新知 方法点拨 比比较底数大于较底数大于1的幂的大小的方法有两种的幂的大小的方法有两种:1.底数底数相同相同,指数越大指数越大,幂就
10、越大幂就越大;2.指数指数相同相同,底数越大底数越大,幂就越大幂就越大.故故在此类题中,一般先观察题目所给数据的特点,在此类题中,一般先观察题目所给数据的特点,将其将其转化为同底数的幂转化为同底数的幂或或同指数的幂同指数的幂,然后再进行大,然后再进行大小比较小比较.探究新知探究新知4.比较大小:比较大小:233_322233=(23)11=811322=(32)11=911811911,233322巩固练习巩固练习解析:解析:1.(2018南京南京)计算计算a3(a3)2的结果的结果是是()Aa8Ba9 Ca11 Da18连 接 中 考连 接 中 考巩固练习巩固练习2.(2018大庆大庆)若若
11、2x=5,2y=3,则,则22x+y=_解析:解析:2x=5,2y=3,22x+y=(2x)22y=523=75B751(2018淮淮安安)(a2)3=2.下下列各式的括号内,应填入列各式的括号内,应填入b4的是的是()Ab12()8 Bb12()6Cb12()3 Db12()2C课堂检测课堂检测基 础 巩 固 题基 础 巩 固 题a63下列计算中,错误的是下列计算中,错误的是()A(ab)23(ab)6 B(ab)25(ab)7C(ab)3n(ab)3n D(ab)32(ab)6B4如果如果(9n)2312,那么,那么n的值是的值是()A4 B3 C2 D1B课堂检测课堂检测基 础 巩 固
12、题基 础 巩 固 题5计算:计算:(1)(102)8;(2)(xm)2;(3)(a)35(4)(x2)m.解:解:(1)(102)81016.(2)(xm)2x2m.(3)(a)35(a)15a15.(4)(x2)mx2m.基 础 巩 固 题基 础 巩 固 题课堂检测课堂检测6计算:计算:(1)5(a3)413(a6)2;(2)7x4x5(x)75(x4)4(x8)2;(3)(xy)36(xy)29.解:解:(1)原式原式5a1213a128a12.(2)原式原式7x9x75x16x163x16.(3)原式原式(xy)18(xy)180.课堂检测课堂检测基 础 巩 固 题基 础 巩 固 题已已
13、知知3x+4y5=0,求求27x81y的值的值.解解:3x+4y5=0,3x+4y=5,27x81y=(33)x(34)y =33x34y =33x+4y =35 =243.能 力 提 升 题能 力 提 升 题课堂检测课堂检测已已知知a=355,b=444,c=533,试比较试比较a,b,c的大小的大小.解解:a=355=(35)11=24311,b=444=(44)11=25611,c=533=(53)11=12511.256243125,bac.拓 广 探 索 题拓 广 探 索 题课堂检测课堂检测幂的乘方法 则(am)n=amn(m,n都是正整数)注 意幂的乘方,底数不变,指数相乘幂的乘方与同底数幂的乘法的区别:(am)n=amn;am an=am+n幂的乘方法则的逆用:amn=(am)n=(an)m课堂小结课堂小结1.从课后习题中选取;从课后习题中选取;2.完成练习册本课时的完成练习册本课时的习题习题.课后作业课后作业