大学精品课件:高等数学第十二章齐次方程.ppt

上传人(卖家):金钥匙文档 文档编号:431110 上传时间:2020-04-04 格式:PPT 页数:11 大小:361KB
下载 相关 举报
大学精品课件:高等数学第十二章齐次方程.ppt_第1页
第1页 / 共11页
大学精品课件:高等数学第十二章齐次方程.ppt_第2页
第2页 / 共11页
大学精品课件:高等数学第十二章齐次方程.ppt_第3页
第3页 / 共11页
大学精品课件:高等数学第十二章齐次方程.ppt_第4页
第4页 / 共11页
大学精品课件:高等数学第十二章齐次方程.ppt_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、,齐次方程,机动 目录 上页 下页 返回 结束,第三节,一、齐次方程,*二、可化为齐次方程,第十二章,一、齐次方程,形如,的方程叫做齐次方程 .,令,代入原方程得,两边积分, 得,积分后再用,代替 u,便得原方程的通解.,解法:,分离变量:,机动 目录 上页 下页 返回 结束,例1. 解微分方程,解:,代入原方程得,分离变量,两边积分,得,故原方程的通解为,( 当 C = 0 时, y = 0 也是方程的解),( C 为任意常数 ),机动 目录 上页 下页 返回 结束,例2. 解微分方程,解:,则有,分离变量,积分得,代回原变量得通解,即,说明: 显然 x = 0 , y = 0 , y =

2、x 也是原方程的解, 但在,(C 为任意常数),求解过程中丢失了.,机动 目录 上页 下页 返回 结束,可得 OMA = OAM = ,例3. 在制造探照灯反射镜面时,解: 设光源在坐标原点,则反射镜面由曲线,绕 x 轴旋转而成 .,过曲线上任意点 M (x, y) 作切线 M T,由光的反射定律:,入射角 = 反射角,取x 轴平行于光线反射方向,从而 AO = OM,要求点光源的光线反,射出去有良好的方向性 ,试求反射镜面的形状.,而 AO,于是得微分方程 :,机动 目录 上页 下页 返回 结束,利用曲线的对称性, 不妨设 y 0,积分得,故有,得,(抛物线),故反射镜面为旋转抛物面.,于是

3、方程化为,(齐次方程),机动 目录 上页 下页 返回 结束,顶到底的距离为 h ,说明:,则将,这时旋转曲面方程为,若已知反射镜面的底面直径为 d ,代入通解表达式得,机动 目录 上页 下页 返回 结束,( h, k 为待,*二、可化为齐次方程的方程,作变换,原方程化为,令, 解出 h , k,(齐次方程),定常数),机动 目录 上页 下页 返回 结束,求出其解后,即得原方,程的解.,原方程可化为,令,(可分离变量方程),注: 上述方法可适用于下述更一般的方程,机动 目录 上页 下页 返回 结束,例4. 求解,解:,令,得,再令 YX u , 得,令,积分得,代回原变量, 得原方程的通解:,机动 目录 上页 下页 返回 结束,得 C = 1 ,故所求特解为,思考: 若方程改为,如何求解?,提示:,作业 P276 1(1), (4), (6); 2 (2), (3); 3; 4(4),第四节 目录 上页 下页 返回 结束,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 大学
版权提示 | 免责声明

1,本文(大学精品课件:高等数学第十二章齐次方程.ppt)为本站会员(金钥匙文档)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|