1、第五章第五章 相交线与平行线相交线与平行线 小结与复习知识结构知识结构相交线相交线两条直线相交邻补角、对顶角对顶角相等垂线及其性质点到直线的距离两条直线被第三条直线所截同位角、内错角、同旁内角平行线平行线平行公理平移判定性质1.1.垂线的定义垂线的定义:两条直线相交,所构成的四个角中,有一个角是 时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线。它们的交点叫垂足。0902.垂线的性质垂线的性质:(1)过一点有且只有一条直线与已知直线垂直。性质(2):直线外一点与直线上各点连结的所有线段中,垂线段最短。简称:垂线段最短。3.点到直线的距离点到直线的距离:从直线外一点到这条直线的垂线段
2、的长度,叫做点到直线的距离。4.如遇到线段与线段,线段与射线,射线与射线,线段或射线与直线垂直时,特指它们所在的直线互相垂直。特指它们所在的直线互相垂直。5.垂线是直线,垂线段特指一条线段是图形,点到直线距离是指垂线段的长度,是指一个数量,是有单位的。6.平行线的概念平行线的概念:在同一平面内,不相交的两条直线叫做在同一平面内,不相交的两条直线叫做_.7.两直线的位置关系两直线的位置关系:在同一平面内,两直线的位置关系只有两在同一平面内,两直线的位置关系只有两 种种_。8.平行线的基本性质平行线的基本性质:(1)平行公理平行公理(平行线的存在性和唯一性平行线的存在性和唯一性)经过直线外一点,有
3、且只有一条直线与已知直线平行。经过直线外一点,有且只有一条直线与已知直线平行。(2)推论推论(平行线的传递性平行线的传递性)如果两条直线都和第三条直线平行,如果两条直线都和第三条直线平行,那么这两条直线也互相平行。那么这两条直线也互相平行。9.同位角、内错角、同旁内角的概念同位角、内错角、同旁内角的概念 同位角、内错角、同旁内角,指的是一条直线分别与两条直线同位角、内错角、同旁内角,指的是一条直线分别与两条直线 相交构成的八个角中,相交构成的八个角中,不共顶点的角之间的特殊位置关系。不共顶点的角之间的特殊位置关系。它们与对顶角、邻补角一样,它们与对顶角、邻补角一样,总是成对存在着的。总是成对存
4、在着的。平行线平行线。:(1)相交相交;(2)平行平行平行线的性质平行线的性质平行线的判定平行线的判定两直线平行两直线平行条件条件结论结论同位角相等同位角相等内错角相等内错角相等同旁内角互补同旁内角互补条件条件同位角相等同位角相等内错角相等内错角相等同旁内角互补同旁内角互补结论结论两直线平行两直线平行夹在两平行线间的垂线段的长度夹在两平行线间的垂线段的长度,叫做两平行叫做两平行线间的距离。线间的距离。平行线的性质与判定11.命题的概念命题的概念:判断一件事情的句子,叫做命题。叫做命题。命题必须是一个完整的句子命题必须是一个完整的句子;这个句子必须对某件事情做出肯定或者否定的判断。两者缺一不可。
5、两者缺一不可。12.命题的组成命题的组成:每个命是由题设、结论两部分组成。每个命是由题设、结论两部分组成。题设是已知事项;结论是由已知事项推出的事项。命题常写成 “如果,那么”的形式。或“若,则”等形式。13.真命题和假命题真命题和假命题:命题是一个判断,命题是一个判断,这个判断可能是正确的,也可以是错误的。由此可以把命题分成真命题和假命题真命题和假命题。真命题就是真命题就是:如果题设成立,那么结论一定成立的命题。假命题就是假命题就是:如果题设成立时,不能保证结论总是成立的命题。14.平移变换的定义平移变换的定义:把一个图形整体沿某一方向移动,会得到 一个新图形,这样的图形运动,叫做平移变换,
6、简称平移。叫做平移变换,简称平移。15.平移的性质平移的性质:(1)平移不改变图形的形状和大小。(2)对应点连结而成的线段平行(或共线)且相等。16.决定平移的因素是平移的决定平移的因素是平移的方向和距离。方向和距离。17.经过平移,图形上的每一点都沿同一方向移动相同的距离。经过平移,图形上的每一点都沿同一方向移动相同的距离。18.经过平移,经过平移,对应角相等对应角相等;对应线段平行(或共线)且相等;对应点所连的线段平行对应点所连的线段平行(或共线)且相等。且相等。ABCDOE此题需要正确地此题需要正确地应用、对顶角、应用、对顶角、邻补角、垂直的邻补角、垂直的概念和性质。概念和性质。0000
7、:551803090120DOECOECOECOECOEOEABBOEBOCBOECOE 00解 由邻补角的定义知:COE+DOE=180,又由又由对顶角相等得:AOD=BOC=1201.5ABCDOOEABODOECOEAOD 例 直线、相交于点,垂足为,且。求的度数。2.:32:13OAOCOBODAOBBOCCOD例 已知,求的度数。OADCB由垂直先找到由垂直先找到 的的角,再根据角之间角,再根据角之间的关系求解。的关系求解。000000000.:9090:32:1332213 22690902664OAOCAOCAOBBOCAOBBOCAOBxxBOCOBODBODCOD0解由知即由
8、,设,则 BOC=13x列方程:32x+13x=90又090例例3.已知已知0 证明证明:(已知已知)0(已知已知)ABCDEFABCDEF123456 1.如图:如图:填空,并注明理由。填空,并注明理由。(1)、)、1=2 (已知)(已知)()3=4 (已知)(已知)()5=6(已知)(已知)()5+AFE=180(已知)(已知)()AB FC,ED FC(已知)(已知)()ABED内错角相等。两内错角相等。两直线平行,直线平行,AFBE同位角相等,两直线平行。同位角相等,两直线平行。BCEF 内错角相等,两直线平行。内错角相等,两直线平行。AFBE同旁内角互补,两直线平行。同旁内角互补,两
9、直线平行。ABED平行于同直线的两条直线互相平行。平行于同直线的两条直线互相平行。练习题练习题ABCDEF1232、填空:、填空:(1)、A=_,(已知)已知)ACED ,(_)(2)、AB _,(已知)已知)2=4,(_)45(3)、_ _,(已知)已知)B=3.(_ _)4同位角相等,两直线平行。同位角相等,两直线平行。DF两直线平行两直线平行,内错角相等。内错角相等。ABDF两直线平行两直线平行,同位角相等同位角相等.3.如图,已知:已知:ACDE,1=2,试证明,试证明ABCD。证明:证明:ACDE(已知)(已知)ACD=2 (两直线平行,内错角相等两直线平行,内错角相等)1=2(已知
10、)(已知)1=ACD(等量代换等量代换)AB CD (内错角相等,两直线平行内错角相等,两直线平行)ADBE12CD 当堂检测2.在以下生活现象中在以下生活现象中,不是平移现象的是不是平移现象的是()A.站在运动着的电梯上的人站在运动着的电梯上的人B.左右推动的推拉窗扇左右推动的推拉窗扇C.小李荡秋千运动小李荡秋千运动D.的躺在火车上睡觉的旅客的躺在火车上睡觉的旅客CC D C B 50 如果几个角都是直角,那么这几个角相等如果几个角都是直角,那么这几个角相等 50 120 60 2.已知已知 EFAB,CDAB,EFB=GDC,求,求证:证:AGD=ACB。证明:证明:EFAB,CDAB(已知)(已知)ADBC (垂直于同一条直线的两条直线互相平行垂直于同一条直线的两条直线互相平行)EFB DCB (两直线平行,同位角相等)(两直线平行,同位角相等)EFB=GDC(已知)(已知)DCB=GDC(等量代换)(等量代换)DGBC(内错角相等(内错角相等,两直线平行)两直线平行)AGD=ACB (两直线平行,同位角相等)(两直线平行,同位角相等)ABCDFGE