1、必修必修3(3(第二章第二章 统计统计)知识结构知识结构 收集数据收集数据 (随机抽样随机抽样)整理、分析数据估整理、分析数据估计、推断计、推断简单随机抽简单随机抽样样分层抽样分层抽样系统抽样系统抽样用样本估计总体用样本估计总体变量间的相关关系变量间的相关关系 用样本用样本的频率的频率分布估分布估计总体计总体分布分布 用样本用样本数字特数字特征估计征估计总体数总体数字特征字特征线性回归分析线性回归分析第1页/共25页1、两个变量的关系不相关相关关系函数关系线性相关非线性相关现实生活中两个变量间的关系有哪些呢?现实生活中两个变量间的关系有哪些呢?相关关系:相关关系:对于两个变量,当自变量取值一定
2、时,对于两个变量,当自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关因变量的取值带有一定随机性的两个变量之间的关系。系。第2页/共25页思考思考:相关关系与函数关系有怎样的不同?:相关关系与函数关系有怎样的不同?函数关系中的两个变量间是一种确定性关系相关关系是一种非确定性关系 函数关系是一种理想的关系模型 相关关系在现实生活中大量存在,是更一般的情况第3页/共25页2、最小二乘估计、最小二乘估计(使得样本数据的点到回归直线的距离的使得样本数据的点到回归直线的距离的 平方和最小的方法叫最小二乘法平方和最小的方法叫最小二乘法)最小二乘估计下的线性回归直线方程:ybxa1221211(
3、)()()niiinniiiiiniix ynxxxyybxxyxnx aybxniixnx11niiyny11回归直线必过样本点的中心),(yx第4页/共25页线性回归方程 中,的意义是x每增加一个单位,y就平均增加 个单位bybxab22.5,yxx设有一个回归方程变量 增加一个单位时,则()A y平均增加2.5个单位 B y平均增加2个单位C y平均减少2.5个单位 D y平均减少2个单位C第5页/共25页3、回归分析的基本步骤回归分析的基本步骤:画散点图求回归方程预报、决策这种方法称为回归分析.回归分析是对具有相关关系的两个变量进行统计 分析的一种常用方法.第6页/共25页回归分析知识
4、结构图问题背景分析问题背景分析线性回归模型线性回归模型两个变量线性相关两个变量线性相关最小二乘法最小二乘法两个变量非线性相关两个变量非线性相关非线性回归模型非线性回归模型残差分析残差分析散点图散点图应用应用注:虚线表示高中阶段不涉及的关系2R第7页/共25页 比比数学数学3中中“回归回归”增加的内容增加的内容数学数学统计统计1.画散点图画散点图2.了解最小二乘法的思想了解最小二乘法的思想3.求回归直线方程求回归直线方程ybxa4.用回归直线方程解决应用问题用回归直线方程解决应用问题选修1-2统计案例5.引入线性回归模型引入线性回归模型6.了解模型中随机误差项了解模型中随机误差项e产生的原因产生
5、的原因7.了解相关指数了解相关指数 R2 和模型拟合的效果之间的关系和模型拟合的效果之间的关系8.了解残差图的作用了解残差图的作用9.利用线性回归模型解决一类非线性回归问题利用线性回归模型解决一类非线性回归问题10.正确理解分析方法与结果正确理解分析方法与结果ybxae选修1-2统计案例5.引入线性回归模型引入线性回归模型6.了解模型中随机误差项了解模型中随机误差项e产生产生的原因的原因7.了解相关指数了解相关指数 R2 和模型拟合和模型拟合的效果之间的关系的效果之间的关系8.了解残差图的作用了解残差图的作用9.利用线性回归模型解决一类非利用线性回归模型解决一类非线性回归问题线性回归问题10.
6、正确理解分析方法与结果正确理解分析方法与结果ybxae第8页/共25页例1 从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号求根据女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。解:选取身高为自变量x,体重为因变量y,作散点图:第9页/共25页1(4857505464614359)54.58y 1(165165157170175165155170)165.258x 8116548165 5715750170 54175 641
7、65 61 15543 170 5972315iiix y82222222221165165157170175165155170218774iix81822180.8 984iiiiix yxbyxx 85.712aybx 第10页/共25页0.849 17285.71260.316()ykg0.84985.712yx所求线性回归方程为:172xcm当时第11页/共25页探究:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?答:用这个回归方程不能给出每个身高为 172cm的女大学生的体重的预测值,只能给出她们平均体重的估计值。由于所有的样本点不共线,而只
8、是散布在某一直线的附近,所以身高和体重的关系可以用线性回归模型来表示:eabxy其中a和b为模型的未知参数,e称为随机误差.第12页/共25页函数模型与函数模型与“回归模型回归模型”的关系的关系函数模型:函数模型:因变量因变量y完全由自变量完全由自变量x确定确定回归模型:回归模型:预报变量预报变量y完全由解释变量完全由解释变量x和随机误差和随机误差e确定确定第13页/共25页注:e 产生的主要原因:1、忽略了其它因素的影响:影响身高 y 的因素 不只是体重 x,可能还包括遗传基因、饮食习惯、生长环境等因素;2、用线性回归模型近似真实模型所引起的误差;3、身高 y 的观测误差。思考:产生随机误差
9、项e的原因是什么?第14页/共25页在线性回归模型中,e是用 预报真实值y的随机误差,它是一个不可观测的量,那么应如何研究随机误差呢?bxa残差:一般地,对于样本点 它们的随机误差为 其估计值为 ,称为相应于点 的残差1122,(,),.,(,)nnx yxyxy(),1,2,.iiieybxa in,1,2,.iiiiieyyybxa inie(,)iix y第15页/共25页如何发现数据中的错误?如何衡量随机模型的拟合效果?iiieybxa(1)计算(i=1,2,.n)残差分析(2)画残差图(1)查找异常样本数据(3)分析残差图(2)残差点分布在以O为中心的水平带状区域,并沿水平方向散点的
10、分布规律相同。第16页/共25页残差图的制作和作用:残差图的制作和作用:制作:制作:坐标纵轴坐标纵轴为为残差变量,残差变量,横轴可以有不同的选择横轴可以有不同的选择.横轴为编号:横轴为编号:可以考察残差与编号次序之间的关系,可以考察残差与编号次序之间的关系,常用于调查数据错误常用于调查数据错误.横轴为解释变量:横轴为解释变量:可以考察残差与解释变量的关系,可以考察残差与解释变量的关系,常用于研究模型是否有改进的余地常用于研究模型是否有改进的余地.作用:作用:判断模型的适用性若模型选择得正确,判断模型的适用性若模型选择得正确,残差图中的点应该分布在以横轴为中心的带形区域残差图中的点应该分布在以横
11、轴为中心的带形区域.第17页/共25页下面表格列出了女大学生身高和体重的原始数据以及相应的残差数据。编号编号12345678身高身高/cm165165157170175165155170体重体重/kg4857505464614359残差残差-6.3732.6272.419-4.6181.1376.627-2.8830.382身高与体重残差图异常点 几点说明:第一个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。另外,残差点比较均匀地落在水平的带状区域中,说明选
12、用的模型计较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。错误数据 模型问题第18页/共25页误差与残差,这两个概念在某程度上具有很大的相似性,都是衡量不确定性的指标,可是两者又存在区别。误差与测量有关,误差大小可以衡量测量的准确性,误差越大则表示测量越不准确。误差分为两类:系统误差与随机误差。其中,系统误差与测量方案有关,通过改进测量方案可以避免系统误差。随机误差与观测者,测量工具,被观测物体的性质有关,只能尽量减小,却不能避免。残差与预测有关,残差大小可以衡量预测的准确性。残差越大表示预测越不准确。残差与数据本身的分布特性,回归方程的选择有关。第19页/共2
13、5页显然,R2的值越大,说明残差平方和越小,也就是说模型拟合效果越好在线性回归模型中,R2表示解析变量对预报变量变化的贡献率我们可以用相关指数R2来刻画回归的效果,其计算公式是:22121()11()niiiniiyyRyy残 差 平 方 和总 偏 差 平 方 和$第20页/共25页注:相关指数R R2 2是度量模型拟合效果的一种指标,在线性模型中,它代表自变量刻画预报变量的能力.R2越接近1,表示回归的效果越好(因为R2越接近1,表示解释变量和预报变量的线性相关性越强)如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较R2的值来做出选择,即选取R2较大的模型作为这组数据的模型。
14、第21页/共25页下面我们用相关指数分析一下例1:预报变量的变化程度可以分解为由解释变量引起的变化程度与残差变量的变化程度之和,即222111()()()nnniiiiiiiyyyyyy;解析变量对总效应约贡献了64%,即可以叙述为“身高解析了64%的体重变化”,而随机误差贡献了剩余的36%,故身高对体重的效应比随机误差的效应大得多20.64R 第22页/共25页结合例1思考:用回归方程预报体重时应注意什么?1.回归方程只适用于我们所研究的样本的总体;2.我们建立的回归方程一般都有时间性;3.样本取值的范围会影响回归方程的适用范围;4.不能期望回归方程得到的预报值就是预报变量的精确值.涉及到统
15、计的一些思想:模型适用的总体;模型的时间性;样本的取值范围对模型的影响;模型预报结果的正确理解。第23页/共25页归纳建立回归模型的基本步骤(1)确定研究对象,明确哪个变量是解析变量,哪个变量是预报变量;(2)画出确定好的解析变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等);(4)按一定规则估计回归方程中的参数(如最小二乘法);(5)得出结果后分析残差图是否有异常(个别数据对应残差过大,或残差呈现不随机的规律性等),过存在异常,则检查数据是否有误,或模型是否合适等.(3)由经验确定回归方程的类型(如我们观察到数据 呈线性关系,则选用线性回归方程 ).ybxa第24页/共25页感谢观看!第25页/共25页