高中数学课件:《131函数的单调性》课件.ppt

上传人(卖家):晟晟文业 文档编号:4331960 上传时间:2022-11-30 格式:PPT 页数:42 大小:2.91MB
下载 相关 举报
高中数学课件:《131函数的单调性》课件.ppt_第1页
第1页 / 共42页
高中数学课件:《131函数的单调性》课件.ppt_第2页
第2页 / 共42页
高中数学课件:《131函数的单调性》课件.ppt_第3页
第3页 / 共42页
高中数学课件:《131函数的单调性》课件.ppt_第4页
第4页 / 共42页
高中数学课件:《131函数的单调性》课件.ppt_第5页
第5页 / 共42页
点击查看更多>>
资源描述

1、第第211节开头的第三个问题中,气节开头的第三个问题中,气温温是关于时间是关于时间t的函数的函数4812162024to-2248610 xyoyY=2x+1xoY=(x-1)2-112-1yxy=x3oyOxx1y Oxyx()f x2()f xxOxyx()f x2()f xxxOxyx()f x2()f xxOxyx()f x2()f xxOxyx()f x2()f xxOxyx()f x2()f xxOxyx()f x2()f xxOxyx()f x2()f xxOx()f xxy2()f xxxyOx()f x2()f xx(-,00上上 随随 x x 的的增大增大而而减小减小()f

2、 x0 0,+)上)上 随随 x x 的的增大增大而而增大增大()f xxyo)(xfy mnf(x1)x1x2f(x2)如果对于区间如果对于区间I 内的内的任意任意两个值两个值1212,x xxx当时12 ()()f xf x都有那么就说那么就说 在区间在区间I上是单调上是单调增增函数函数()yf x I 称为称为 的单调的单调增增区间区间()yf xf(x1)x1x2f(x2)如果对于区间如果对于区间I 内的内的任意任意两个值两个值1212,x xxx当时12 ()()f xf x都有那么就说那么就说 在区间在区间I上是单调上是单调减减函数函数()yf x I 称为称为 的单调的单调减减区

3、间区间()yf x)x(fyOxyyxoyY=2x+1xoY=(x-1)2-112-1yxy=x3oyOxx1y 增区间增区间为为(,)增区间增区间为为增区间增区间为为(,)1,)减区间减区间为为(,1减区间减区间为为(,0),(0,)例例1:写出函数的单调区间写出函数的单调区间(1)函数的)函数的单调性单调性也叫函数的也叫函数的增减性增减性;(2)函数的单调性是对某个区间而言的,它是个)函数的单调性是对某个区间而言的,它是个局部概念局部概念。这个区间是定义域的。这个区间是定义域的子集子集。(3)单调区间:针对自变量)单调区间:针对自变量 x 而言的。而言的。若函数在此区间上是增函数,则若函数

4、在此区间上是增函数,则区间区间为单调递为单调递增增区间区间若函数在此区间上是减函数,则若函数在此区间上是减函数,则区间区间为单调递为单调递减减区间区间例例2:证明:函数证明:函数 f(x)=3x+2 在在 R上上 是单调增函数。是单调增函数。证明:设证明:设 x 1,x 2是是R上的任意两个值,且上的任意两个值,且x 1 x 2,则则 f(x 1)f(x 2)=(3x 1+2)()(3 x 2 +2)=3(x 1 x 2 )x 1 x 2 ,x 1 x 2 0f(x 1)f(x 2)0即即f(x 1)f(x 2)所以所以,函数函数 f(x)=3x+2 在在 R上是单调增函数。上是单调增函数。取

5、量定大小取量定大小:作差定符号作差定符号:f(x 1)f(x 2)的结果化积或化完全平方的结果化积或化完全平方式的和;式的和;结论一定要指出在那个区间上。结论一定要指出在那个区间上。回顾小结:回顾小结:这节课我们学习了函数单调性的定义,这节课我们学习了函数单调性的定义,要特别注意定义中要特别注意定义中“给定区间给定区间”,“属于属于”,“任意任意”“都有都有”这几个关键词语;在写单调区间时不要这几个关键词语;在写单调区间时不要轻易用轻易用并集并集的符号连接;最后在用定义证明函的符号连接;最后在用定义证明函数的单调性时,应该注意证明的几个步骤数的单调性时,应该注意证明的几个步骤 观察下列各个函数

6、的图象,并说说它们观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律分别反映了相应函数的哪些变化规律:1、观察这三个图象,你能说出图象的特征吗?、观察这三个图象,你能说出图象的特征吗?2、随随x的增大,的增大,y的值有什么变化?的值有什么变化?画出下列函数的图象,观察其变化规律:画出下列函数的图象,观察其变化规律:1、从左至右图象上升还是下降、从左至右图象上升还是下降 _?2、在区间在区间 _上,随着上,随着x的增大,的增大,f(x)的值随的值随着着 _ f(x)=x(-,+)增大增大上升上升1、在区间、在区间 _ 上,上,f(x)的值随着的值随着x的增大而的增大而 _2、在区

7、间在区间 _ 上,上,f(x)的值随的值随着着x的增大而的增大而 _ f(x)=x2(-,0(0,+)增大增大减小减小画出下列函数的图象,观察其变化规律:画出下列函数的图象,观察其变化规律:x-4-3-2-1 01234f(x)=x2 16941014916.0)()()()(,)(,0 2212122221121增增函函数数上是,在区间们就说函数,这时我时,有,当,得到上任取两个,在区间xxfxfxfxxxxfxxfxx一、函数单调性定义一、函数单调性定义 一般地,设函数一般地,设函数y=f(x)的定义域为的定义域为I,如果对如果对于定义域于定义域I内的某个区间内的某个区间D内的任意两个自变

8、量内的任意两个自变量x1,x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在区间在区间D上是上是增函数增函数 1增函数增函数一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1f(x2),那么就说f(x)在区间D上是减函数减函数 2减函数减函数 1、函数的单调性是在定义域内的某个区间上函数的单调性是在定义域内的某个区间上的性质,是函数的的性质,是函数的局部性质局部性质;注意:注意:2、必须是对于区间必须是对于区间D内的内的任意任意两个自变量两个自变量x1,x2;当;当x1x2时,时,总有总有f(x1)f(

9、x2)分别是增函数和减函数分别是增函数和减函数.如果函数如果函数y=f(x)在某个区间上是增函在某个区间上是增函数或是减函数,那么就说函数数或是减函数,那么就说函数y=f(x)在这在这一区间具有(严格的)一区间具有(严格的)单调性单调性,区间,区间D叫叫做做y=f(x)的的单调区间单调区间.二二函数的单调性定义函数的单调性定义yoxoyxyoxyoxyox在 增函数在 减函数ab2-,,2ab在 增函数在 减函数ab2-,,2ab在(-,+)是减函数在(-,0)和(0,+)是减函数在(-,+)是增函数在(-,0)和(0,+)是增函数yox例1、下图是定义在区间-5,5上的函数y=f(x),根据

10、图象说出函数的单调区间,以及在每个区间上,它是增函数还是减函数?解:函数解:函数y=f(x)的单调区间有的单调区间有 -5,-2),-2,1),1,3),3,5 其中其中y=f(x)在区间在区间-5,-2),1,3)是减函数,是减函数,在区间在区间-2,1),3,5 上是增函数。上是增函数。例例2、物理学中的玻意耳定律、物理学中的玻意耳定律 告告诉我们,对于一定量的气体,当其体积诉我们,对于一定量的气体,当其体积V减小时,减小时,压强压强p将增大。试用函数的单调性证明之。将增大。试用函数的单调性证明之。)(为正常数kVkp 证明:证明:根据单调性的定义,设V1,V2是定义域(0,+)上的任意两

11、个实数,且V1V2,则21121212()()VVkkp Vp VkVVVV由V1,V2(0,+)且V10,V2-V1 0又k0,于是0)()(21VpVp)()(12VpVp 即 所以,函数 是减函数.也就是说,当体积V减少时,压强p将增大.),0(,VVkp取值定号变形作差结论结论三三判断函数单调性的方法步骤判断函数单调性的方法步骤 1 任取任取x1,x2D,且,且x1x2;2 作差作差f(x1)f(x2);3 变形(通常是因式分解和配方);变形(通常是因式分解和配方);4 定号(即判断差定号(即判断差f(x1)f(x2)的正负);的正负);5 下结论(即指出函数下结论(即指出函数f(x)

12、在给定的区间在给定的区间D上的上的单调性)单调性)利用定义证明函数利用定义证明函数f(x)在给定的区间在给定的区间D上的单上的单调性的一般步骤:调性的一般步骤:思考?思考:画出反比例函数的图象1 这个函数的定义域是什么?2 它在定义域I上的单调性怎样?证明你的结论 证明:证明:设设x1,x2是是上任意两个实数,上任意两个实数,且且x10,又由又由x10所以所以f(x1)-f(x2)0,即即f(x1)f(x2),0因此因此 f(x)=1/x 在在(0,+)上是减上是减函数。函数。取值定号变形作差判断四、归纳小结四、归纳小结 函数的单调性一般是先根据图象判断根据图象判断,再利再利用定义证明用定义证

13、明画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取取 值值 作作 差差 变变 形形 定定 号号 下结论下结论 1 书面作业:课本书面作业:课本P45 习题习题13(A组)组)第第3、4题题五、作业五、作业1、法二:作商的方法由x10)yxoy=kx+b (k0)讨论一般性讨论一般性问题:1、当、当k变化时函数的单调性有何变化?变化时函数的单调性有何变化?2、当、当b变化时函数的单调性有何变化?变化时函数的单调性有何变化?例3借助计算机作出函数y=x2+2|x|+3的图象并指出它的的单调区间 8642-2-4-6-8-1 0-551 0fx2+2 课外作业课外作业1.课本第37页练习第1,2,5,6题2.评价手册第评价手册第23页练习与反馈页练习与反馈

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 其他
版权提示 | 免责声明

1,本文(高中数学课件:《131函数的单调性》课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|