1、2ababICM2002会标会标赵爽:弦图赵爽:弦图ADBCEFGHba22ab基本不等式基本不等式1:一般地,对于任意实数一般地,对于任意实数a、b,我们有,我们有当且仅当当且仅当a=b时,等号成立。时,等号成立。222ababABCDE(FGH)ab基本不等式基本不等式2:(0,0)2ababab当且仅当当且仅当a=b时,等号成立。时,等号成立。注意:注意:(1)两个不等式的)两个不等式的适用范围适用范围不同不同,而等号成立的条件相同而等号成立的条件相同(2)称为正数称为正数a、b的几何平均数的几何平均数 称为它们的算术平均数。称为它们的算术平均数。ab2ab基本不等式的几何解释:基本不等
2、式的几何解释:半弦半弦CD不大于半径不大于半径ABEDCab例例1.(1)已知已知 并指出等号并指出等号成立的条件成立的条件.10,2,xxx求证(2)已知已知 与与2的大小关系的大小关系,并说明理由并说明理由.abbaab寻找,0(3)已知已知 能得到什么结论能得到什么结论?请说明理由请说明理由.abbaab,0应用一:利用基本不等式判断代数式的大小关系应用一:利用基本不等式判断代数式的大小关系练习练习2:若:若 ,则(,则()(1)()(2)()(3)B练习练习1:设:设a0,b0,给出下列不等式,给出下列不等式其中恒成立的其中恒成立的 。21)1(aa4)1)(1)(2(bbaa4)11
3、)()(3(baba2111)4(22aa,lglg,1baPba)2lg(),lg(lg21baRbaQQPRA、RQPB、QPRC、RQPD、应用二:解决最大(小)值问题应用二:解决最大(小)值问题 例例2、已知、已知 都是正数,求证都是正数,求证(1)如果积)如果积 是定值是定值P,那么当,那么当 时,时,和和 有最小值有最小值(2)如果和)如果和 是定值是定值S,那么当,那么当 时,时,积积 有最大值有最大值yx,yxyxyx P2yx 241Sxy(1)一正:各项均为正数)一正:各项均为正数(2)二定:两个正数积为定值,和有最小值。)二定:两个正数积为定值,和有最小值。两个正数和为定
4、值,积有最大值。两个正数和为定值,积有最大值。(3)三相等:求最值时一定要考虑不等式是否能取)三相等:求最值时一定要考虑不等式是否能取“”,否,否则会出现错误则会出现错误小结:利用小结:利用 求最值时要注意下面三条:求最值时要注意下面三条:)0,0(2baabbaxy例例3、(1)用篱笆围一个面积为)用篱笆围一个面积为100m2的矩形菜园,的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短。问这个矩形的长、宽各为多少时,所用篱笆最短。最最短篱笆是多少?短篱笆是多少?(2)一段长为)一段长为36m的篱笆围成一矩形菜园,问这个矩的篱笆围成一矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大
5、。形的长、宽各为多少时,菜园的面积最大。最大面积最大面积是多少?是多少?2、(04重庆)已知重庆)已知则则x y 的最大值是的最大值是 。练习:练习:1、当、当x0时,时,的最小值为的最小值为 ,此时,此时x=。21xx1)0,0(232yxyx61 3、若实数、若实数 ,且,且 ,则,则 的最小值是(的最小值是()A、10 B、C、D、4、在下列函数中,最小值为、在下列函数中,最小值为2的是(的是()A、B、C、D、)0,(55xRxxxy)101(lg1lgxxxy)(33Rxyxx)20(sin1sinxxxyyx,5 yxyx333664318DC例4、求函数 的最小值4522xxy构造积为定值,利用基本不等式求最值思考:求函数 的最小值)3(31xxxy构造和为定值,利用基本不等式求最值例5、已知 ,求 的最大值10 x21xx练习:已知 且 ,则最大值是多少?0,0yx2052 yxyxlglg)(.34,0,0,0,0.2)(),(1.12222224442cbaabccacbbacbaacadbcbdbcaddcbabayxRyxybxaba证明:求证:已知求证:,是正数,且、已知等式利用基本不等式证明不