1、在指数函数 中,当函数值分别取3,4,6,9时,你能不能求出自变量x的值分别为多少?创设问题情境创设问题情境 ;创设问题情境创设问题情境 在4.2.1的问题1中,通过指数幂运算,我们能从y 中求出经过x年后地景区的游客人次为2001年的y倍反之,如果要求经过多少年游客人次是2001年的2倍,3倍,4倍,那么该如何解决?上述问题实际上就是从2 2=,3 3=,4 4=,中分别求出x,即已知底数和幂的值,求指数用我们现有的知识体系可以解决上述问题吗?创设问题情境创设问题情境 这就是本节要学习的对数。这就是本节要学习的对数。对对 数数 对数的创始人是苏格兰数学家纳皮尔(Napier,1550年161
2、7年)。他发明了供天文计算作参考的对数,并于1614年在爱丁堡出版了奇妙的对数定律说明书,公布了他的发明。恩格斯把对数的发明与解析几何的创始,微积分的建立并称为17世纪数学的三大成就。(具体发明的过程请大家阅读课本128页的对数的发明。)对数的发明对数的发明 高中数学人教版必修1-对数的概念课件(共25张PPT)高中数学人教版必修1-对数的概念课件(共25张PPT)对对 数数 对数在生产、生活中的作用对数在生产、生活中的作用 对数表的发明对数表的发明,很快得到了人们的认可很快得到了人们的认可,尤其尤其是天文学界是天文学界,他们认为对数的发明延长了天他们认为对数的发明延长了天文学者的寿命文学者的
3、寿命.伽利略甚至说伽利略甚至说,给他空间、时给他空间、时间及对数间及对数,他就可以创造一个宇宙他就可以创造一个宇宙.在生产生在生产生活中测量地震的里氏多少多少级活中测量地震的里氏多少多少级,就是个对就是个对数;数;PH值是个对数;人口增长率、死亡率、值是个对数;人口增长率、死亡率、生物的繁殖率生物的繁殖率,银行的利息率、国民经济增银行的利息率、国民经济增长率、原子的核衰变长率、原子的核衰变,甚至人死后的体温降甚至人死后的体温降低率等等等等低率等等等等.这些计算方面的问题这些计算方面的问题,很多都很多都要用到对数的要用到对数的.高中数学人教版必修1-对数的概念课件(共25张PPT)高中数学人教版
4、必修1-对数的概念课件(共25张PPT)对数的概念对数的概念 注意:注意:(1)对数的写法(四线三格);)对数的写法(四线三格);(2)log只是记录对数的符号,类似于三角中的正只是记录对数的符号,类似于三角中的正余弦余弦sin,cos等等;(3)logaN不是不是loga与与N的乘积;的乘积;(4)对数是一个数,是指数式中指数的等价表达。)对数是一个数,是指数式中指数的等价表达。高中数学人教版必修1-对数的概念课件(共25张PPT)高中数学人教版必修1-对数的概念课件(共25张PPT)例如,由于 ,所以x就是以1.11为底2的对数,记作 ;由于 ,所以x就是以3为底6的对数,记作 ;再如,由
5、于 ,所以以4为底16的对数是2,记作2=log4 16高中数学人教版必修1-对数的概念课件(共25张PPT)高中数学人教版必修1-对数的概念课件(共25张PPT)常用对数与自然对数(阅读课本第四自然段)常用对数与自然对数(阅读课本第四自然段)lg N=ln N=log10 Nloge N高中数学人教版必修1-对数的概念课件(共25张PPT)高中数学人教版必修1-对数的概念课件(共25张PPT)对数的概念对数的概念 高中数学人教版必修1-对数的概念课件(共25张PPT)高中数学人教版必修1-对数的概念课件(共25张PPT)对数的基本性质对数的基本性质 思考:为什么零和负数没有对数?思考:为什么
6、零和负数没有对数?(指的是真数)(指的是真数)(真数N0)高中数学人教版必修1-对数的概念课件(共25张PPT)高中数学人教版必修1-对数的概念课件(共25张PPT)概念辨析概念辨析 高中数学人教版必修1-对数的概念课件(共25张PPT)高中数学人教版必修1-对数的概念课件(共25张PPT)高中数学人教版必修1-对数的概念课件(共25张PPT)高中数学人教版必修1-对数的概念课件(共25张PPT)典例解析典例解析 高中数学人教版必修1-对数的概念课件(共25张PPT)高中数学人教版必修1-对数的概念课件(共25张PPT)归纳总结归纳总结 其实指数式与对数式,虽然从形式上看,两者不同,其实指数式
7、与对数式,虽然从形式上看,两者不同,但本质上是一致的。这个一致就是底数、指数(对数)、但本质上是一致的。这个一致就是底数、指数(对数)、幂(真数)三者之间的关系。幂(真数)三者之间的关系。高中数学人教版必修1-对数的概念课件(共25张PPT)高中数学人教版必修1-对数的概念课件(共25张PPT)典例解析典例解析 实际应用实际应用 例例3:某地某地GDP的年平均增长率为的年平均增长率为6.5,按此增长率,按此增长率,多少年后该地多少年后该地GDP会翻两会翻两番番?(结果用对数表示)。?(结果用对数表示)。解:设当年的解:设当年的GDP为为1,x年后年后GDP翻两番,翻两番,由前面指数知识可得由前面指数知识可得 ,即即x=log1.065 4。所以经过所以经过log1.065 4 年后翻两番。年后翻两番。1求下列各式的值:(1)log5 25;(2)log0.4 1;(3)lg 0.001(1):2 (2):0 (3):3当堂达标当堂达标 课堂小结课堂小结作业:课本作业:课本123页练习页练习1,2,3(做在书上)(做在书上)课本课本126页习题页习题2(1),),10(做在作业本上,结果用对数表示)(做在作业本上,结果用对数表示)问题探究问题探究 高中数学人教版必修1-对数的概念课件(共25张PPT)高中数学人教版必修1-对数的概念课件(共25张PPT)