1、1.3.21.3.2直线的极坐标方程直线的极坐标方程答:与直角坐标系里的情况一样,求答:与直角坐标系里的情况一样,求曲线的极坐标方程就是找出曲线上动曲线的极坐标方程就是找出曲线上动点的坐标点的坐标 与与 之间的关系,然后列之间的关系,然后列出方程出方程(,)=0,再化简并讨论。,再化简并讨论。怎样求曲线的极坐标方程?怎样求曲线的极坐标方程?复习引入:复习引入:例题例题1:求过极点,倾角为:求过极点,倾角为 的射线的射线的极坐标方程。的极坐标方程。4 oMx4 分析:分析:如图,所求的射线如图,所求的射线上任一点的极角都上任一点的极角都是是 ,其,其/4 极径可以取任意的非负数。故所求极径可以取
2、任意的非负数。故所求直线的极坐标方程为直线的极坐标方程为(0)4 新课讲授新课讲授1、求过极点,倾角为、求过极点,倾角为 的射线的极的射线的极坐标方程。坐标方程。54 易得易得5(0)4 思考:思考:2、求过极点,倾角为、求过极点,倾角为 的直线的极的直线的极坐标方程。坐标方程。4 544 或或 和前面的直角坐标系里直线方程的表示形和前面的直角坐标系里直线方程的表示形式比较起来,极坐标系里的直线表示起来很不式比较起来,极坐标系里的直线表示起来很不方便,要用两条射线组合而成。原因在哪?方便,要用两条射线组合而成。原因在哪?0 为了弥补这个不足,可以考虑允许为了弥补这个不足,可以考虑允许极径可以取
3、全体实数。则上面的直极径可以取全体实数。则上面的直线的极坐标方程可以表示为线的极坐标方程可以表示为()4R 或或5()4R 的一条直线。表示极角为的一条射线。表示极角为)()0(R例题例题2、求过点求过点A(a,0)(a0),且垂直,且垂直于极轴的直线于极轴的直线L的极坐标方程。的极坐标方程。解:如图,设点解:如图,设点(,)M 为直线为直线L上除点上除点A外的任外的任意一点,连接意一点,连接OMox AM在在 中有中有 Rt MOA cosOMMOAOA即即cosa 可以验证,点可以验证,点A的坐标也满足上式。的坐标也满足上式。求直线的极坐标方程步骤求直线的极坐标方程步骤1、根据题意画出草图
4、;、根据题意画出草图;2、设点、设点 是直线上任意一点;是直线上任意一点;(,)M 3、连接、连接MO;4、根据几何条件建立关于、根据几何条件建立关于 的方的方 程,并化简;程,并化简;,5、检验并确认所得的方程即为所求。、检验并确认所得的方程即为所求。练习:练习:设点设点P的极坐标为的极坐标为A ,直,直线线 过点过点P且与极轴所成的角为且与极轴所成的角为 ,求直求直线线 的极坐标方程。的极坐标方程。(,0)a ll解:如图,设点解:如图,设点(,)M 为直线为直线 上异于的点上异于的点l连接连接OM,oMx A在在 中有中有 MOA sin()sin()a 即即sin()sina显然显然A
5、点也满点也满足上方程。足上方程。小结:直线的几种极坐标方程小结:直线的几种极坐标方程1、过极点、过极点2、过某个定点,且垂直于极轴、过某个定点,且垂直于极轴3、过某个定点,且与极轴成一定、过某个定点,且与极轴成一定 的角度的角度平行于极轴的直线。、求过点练习)4,2(1AOHMA)4,2(,)(2,)42 sin24sin,sin2(2,)4sin2lMAMHRt OMHMHOMA 解:在直线 上任意取点在中,即所以,过点平行于极轴的直线方程为的直线的极坐标方程。且斜率为、求过2)3,2(2A程这就是所求的极坐标方得代入直线方程将为直线上的任意一点,设角坐标系内直线方程为解:由题意可知,在直0
6、7sincos2072sin,cos),(072yxyxMyx表示的曲线是、极坐标方程)(31sin3RA、两条相交的直线、两条相交的直线B、两条射线、两条射线C、一条直线、一条直线D、一条射线、一条射线所以是两条相交直线两条直线即所以得可得解:由已知042:,042:4242tan322cos31sin21yxlyxlxy4cos24cos2,sin2sin2,2sinABCD 、直线关于直线 对称的直线方程为、()B2sin22化为极坐标方程为即的对称直线的问题关于线解:此题可以变成求直yxyx3cos3cos33sin33sin)6sin(125、直线的极坐标方程是的,则过圆心与极轴垂直一个圆的方程为、在极坐标系中,已知DCBA()C4cos,4cos2cos,2sinsin46、直线的方程是相切的一条、在极坐标系中,与圆DCBA()B2cos24)2(04sin42222化为极坐标方程为圆的方程为那么一条与此圆相切的即的化为直角坐标方程是解:圆xyxyyx._4)0(307面积所围成的和,、曲线OXAB384612SAOB即的面积积就是扇形解:由图可知围成的面